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Пътнико, пътят сам не съществува. 

Пътят с ходене се прави. 
 

A road does not exist on its own. 
A road is made by walking. 
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Abstract 
 
Across the globe, the populations of species and the biodiversity of ecological 
communities are changing, including declines, gains and stable trends over time. Against 
a backdrop of accelerating global change, a critical research challenge is to disentangle 
the sources of the heterogeneous patterns of population and biodiversity change over 
time. In this thesis, I linked population and biodiversity change with species traits like 
rarity and commonness, and with global change drivers like forest loss. I synthesised 
global biodiversity databases with gridded driver datasets to quantify how species’ 
populations and biodiversity are being impacted by human activities in the Anthropocene. 
 
The rise of open-access data in ecology has produced databases with millions of records 
which have launched large-scale syntheses of how Earth’s biota is changing over time 
and space. However, our knowledge of biodiversity change is limited by the available data 
and their biases. In Chapter 1, I tested the representation of three worldwide biodiversity 
databases (Living Planet, BioTIME and PREDICTS) across geographic and temporal 
variation in global change over land and sea and across the tree of life. I found that 
variation in global change drivers is better captured over space than over time and in the 
marine realm versus on land. I provided recommendations on how to improve the use of 

existing data, better target future ecological monitoring and capture different 
combinations of global change. 
 
In Chapter 2, I tested whether vertebrate species from specific biomes, taxa or with 
certain species traits are more likely to increase or decrease in a time of accelerating 
global change. I analysed nearly 10 000 population abundance time series from over 
2000 vertebrate species part of the Living Planet Database. I integrated abundance data 
with information on geographic range, habitat preference, taxonomic and phylogenetic 
relationships, and IUCN Red List Categories and threats. I found that 15% of populations 
declined, 18% increased, and 67% showed no net changes over time. Amphibians were 
the only taxa that experienced net declines in the analysed data, while birds, mammals 
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and reptiles experienced net increases. Despite this variation among broad taxonomic 
groups, surprisingly I did not detect phylogenetic patterns in which species were more 
likely to decline versus increase. Population trends were poorly explained by species’ 
rarity and global-scale threats. I found that incorporating the full spectrum of population 
change, including declines, gains and stable trends, will improve conservation efforts to 

protect global biodiversity.  
 
In Chapter 3, I explored land-use change to fill the gap in empirical evidence of how 
habitat transformations such as forest loss and gain are reshaping biodiversity over time. 
I quantified how change in forest cover has influenced temporal shifts in populations and 
ecological assemblages from over 6000 globally distributed time series across six 
taxonomic groups. I found that local-scale increases and decreases in abundance, 
species richness, and temporal species replacement (turnover) were intensified by as 
much as 48% after forest loss. Larger amounts of forest loss did not always correlate with 
higher population and biodiversity change across sites, highlighting the mediating effects 
of local context and historical baselines. Temporal lags in population- and assemblage-
level shifts after forest loss extended up to 50 years and increased with species’ 
generation time. My findings indicate that forest loss amplified population and biodiversity 
change, with effects on both short and long temporal scales. A mix of immediate and 
lagged biodiversity change following land-use change emphasises the need for 
temporally explicit biodiversity scenarios to accurately estimate progress towards 
conservation goals. 
 
Together, my thesis findings demonstrate the wide spectrum of population and 
biodiversity change happening across varying amounts of global change and different 

realms, taxa and species traits. These heterogeneous impacts of global change on 
population and biodiversity spanned temporal scales from immediate effects in a couple 
of years to lagged responses decades after disturbance. The links between global change 
drivers and shifts in species’ abundance, species richness and compositional turnover 
depended on historical context and species’ characteristics like generation time. I 
documented both immediate and temporally delayed effects of global change drivers on 
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species’ populations abundance and the biodiversity of ecological assemblages which 
highlights the importance of long-term ecological monitoring. The main implications of my 
thesis findings are that first, any inferences drawn from biodiversity syntheses reflect the 
types of species and places represented by the data and the global change that is 
experienced. To create accurate scenarios, we need biodiversity data that span not only 

different taxa and locations, but also the spectrum of global change variation around the 
world. Second, biodiversity predictions should incorporate both positive and negative 
impacts of global change drivers as well as lagged responses. Finally, ecosystems and 
the species within them are usually simultaneously exposed to a suite of global change 
drivers and a key future research step is to test the synergy and/or antagony in the effects 
and interactions among multiple types of environmental change on populations and 
biodiversity. 
 
Overall, my thesis research demonstrates that the drivers of biodiversity change in the 
Anthropocene have both immediate and temporally-delayed effects which depend on 
species’ traits and the sites’ historical context. My findings suggest that by incorporating 
the full spectrum of biodiversity change and the nuance around interacting global change 
drivers we can improve projections of future ecological shifts and enhance local and 
international conservation policies. 
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Lay summary 
Life on our planet is incredibly diverse. There are over eight million species across a 
myriad of habitats, including forests, oceans, coastlands, rivers, deserts and more. From 
the most stunningly coloured parrots in the Amazon to the incredibly strong willows of the 
Arctic and the humble house sparrow, together these species make up Earth’s 
biodiversity. This biodiversity underpins the water, air, land and soil upon which our 
society is built. These species, and millions more, are the culmination of over 4 billion 
years of evolution. And yet, the last century has brought unprecedented changes. 
Humans have transformed and continue to transform the planet by cutting down forests, 
farming land, building cities and burning fossil fuels. Our activities and their consequences 
for nature have brought a time of rapid global change and we know that biodiversity is 
shifting in response. What we have not yet disentangled, however, is what kinds of 
species are most likely to thrive or perish and what are short- and long-term impacts of 
human activities like the cutting of forests on the planet’s biodiversity.  
 
Since beginning my PhD research in 2017, nearly a hundred plants and animals have 
been declared extinct. Faced with ever-diminishing habitats due to logging and 
agriculture, the cryptic treehunter, a bird species from Brazil, has disappeared from the 
canopies of the Atlantic forests. With its island habitat engulfed by rising sea levels, the 

the Bramble Cay melomys – a small island marsupial from Australia – has similarly 
perished. But before final extinction from the planet as a whole, comes biodiversity 
change detectable at smaller scales. It is at these regional or even smaller scales that 
conservation actions are usually implemented. At sites around the world, the abundance 
and type of plants and animals – common like the house sparrow or rare as the likely 
extinct cryptic treehunter – are changing over time. In places like the Amazon, a walk in 
the forest today might be accompanied by an entirely different soundscape compared to 
twenty years ago, as global change has reshuffled biodiversity. To understand such 
biodiversity changes, we need the lens of time — a way to track species presence, 
abundance and their drivers of change over time. Since biodiversity is naturally variable, 
I used information on biodiversity over five up to 150 years to be able to tell apart signal 
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from noise in the data. My thesis aimed to link global change with biodiversity change, 
focusing on the implications of data biases, the importance of rarity and commonness in 
predicting species declines and increases, and the short- and long-term impacts of forest 
loss on biodiversity. 
  

Parallel with global change, an ecological data revolution is also underway. We now have 
more records of the planet’s biodiversity than ever before, but data collection efforts are 
not equally distributed around the world or across the tree of life. Birds are the best studied 
group of animals and the majority of long-term biodiversity data come from Europe and 
North America. Biodiversity change, however, occurs across the whole planet, creating a 
mismatch between the universal nature of shifts in biodiversity and the limited samples 
that we have. We already know that many places and species are understudied. What 
we were previously lacking was was information about whether biodiversity records come 
from habitats that are not disturbed by human activities, heavily modified or somewhere 
in between. I tested how well three worldwide biodiversity databases captured the variety 
of ways in which humans have altered the planet over land and sea. I found that this 
variation in global change is better captured over space than over time. Spatial 
representation of global change was as high as 78% in the marine realm and 31% on 
land. However, many gaps remain, for example, in places experiencing high rates of 
climate change like the Arctic or in the areas of the world where human impact has been 
minimal. By targeting future data collection so that it includes both wild and modified sites, 
we can improve our ability to predict the future of Earth's biodiversity. 
 
As human impacts continue to accumulate on land, oceans and rivers, it is important to 
track how the numbers of different species are changing over time to identify those that 

are threatened with extinction. Among the different animals on Earth, some are rare and 
found in very few locations, while others persist much more widely. This rarity or 
commonness has often been used to guide conservation, yet it remains an open question 
of how rarity relates to changes in the number of animals at sites around the world across 
globally monitored species. I studied nearly 10 000 populations from over 2000 species 
including birds, mammals, fishes, sharks, reptiles and amphibians. I found that found that 
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15% of populations declined, 18% increased, and 67% showed no net changes over time. 
Surprisingly, common animals were just as likely to increase or decrease over time as 
rare ones. For example, a population of the common species red deer in Canada declined 
by more than half, going from 606 down to 194 individuals. In contrast, a population of 
the rare Hawksbill sea turtle from Barbados showed a nearly three-fold increase, going 

from 89 to 328 individuals. My findings highlight that looking beyond just rare species, 
with monitoring efforts across a diversity of species, can improve conservation efforts to 
protect global biodiversity. 
 
Forests support around 80% of all species living on land. Advances in satellite monitoring 
have revealed how the area covered by forests on Earth has been changing over time. 
Simultaneously, large collections of biodiversity records from places where people return 
year after year to measure biodiversity have also been made available. The next key step 
was to merge these different types of data to deepen our knowledge of both the 
immediate and the long-term impact of forest loss on biodiversity. Combining over 5 
million records from over 6000 locations around the world, I carried out a global analysis 
of how forest loss has influenced the biodiversity of plants and animals over the last 150 
years. Forests are being lost across the planet. In temperate biomes, forest cover change 
has persisted for centuries, but in once-secluded wilderness, forest loss is accelerating. I 
found that forest loss did not always lead to declines in biodiversity. Instead, when forest 
cover declined, changes in biodiversity intensified, with increases in the abundance of 
some species and decreases in others. The composition of forest life – the different types 
of species present – was altered too. The rate at which these changes happened in each 
location accelerated as forest cover shrank. I discovered that the pace at which forest 
loss alters biodiversity differs among short-lived animals such as forest beetles and 

longer-lived species such as red-tailed hawks. The longer species live, the longer it took 
for the effects of forest loss to manifest themselves, creating ecological lags between the 
timing of forest loss and biodiversity responses. Such lags can carry across generations. 
Even if plants and animals manage to survive alongside forest loss, they might not be 
able to reproduce, or their offspring might be too weak to survive. My findings emphasise 
both the positive and negative consequences of land-use change on the world’s 
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biodiversity and demonstrate how, by combining datasets from around the world, we can 
assess the state of the world’s forests. 

 
My thesis research demonstrates that global change is influencing temporal change in 
biodiversity in both positive and negative ways. The mix of immediate and delayed 
changes in biodiversity highlights how important it is to monitor plants and animals over 
decades to capture their temporal dynamics in continuously shifting landscapes. A single 
snapshot in time cannot detect the full extent of human impacts on biodiversity. As 
conservation actions continue to be implemented around the world, we need to track 
biodiversity change over time to monitor their success be better equipped to conserve 
Earth’s biodiversity not just now, but for decades to come. 
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Chapter 1. Introduction 
 

1.1 Aims of thesis 
 
In this thesis, I aimed to advance our understanding of biodiversity change in the 
Anthropocene (Figure 1.1) In particular, I synthesised worldwide and cross-taxa open-
access biodiversity data with information on global change drivers and species traits to 
uncover the quantitative links between temporal change in populations and ecological 
assemblages, species traits and forest cover change, a key global change driver in 
terrestrial ecosystems. 
 
 Overarching research questions 
I investigated a range of metrics (population change, species richness, community 
turnover) to quantify differences in temporal biodiversity trends across taxa, biomes, 
different types of species and anthropogenic drivers. The specific research questions I 
addressed are: 
 

1) How well do open-access biodiversity datasets capture variation in global 
change drivers around the world? 
2) How do species’ population trends vary across biomes, taxa and and do rarity 
traits drive variation in species’ abundance over time? 
3) How does forest cover change influence population and biodiversity change 
over time? 
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Figure 1.1 My thesis brought together open-access biodiversity and global change 
datasets to quantify how biodiversity change in the Anthropocene varied across 
realms, taxa, different types of species and varying exposures to forest cover 
change. Such research can help ground truth the scenarios for future biodiversity 
change that are used in international reports and policies, such as those by IPBES. 
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1.2 Structure of thesis 
 
First, I reviewed the existing evidence for population and biodiversity change around the 
world and the possible factors explaining heterogeneous trends (Chapter 1). Chapter 2 
quantified marine and terrestrial global change across the locations of records from three 
open-access biodiversity datasets (Living Planet Database, BioTIME and PREDICTS), 

with an emphasis on human use intensity, climate change, human population density, 
pollution and invasive species potential. Chapter 3 focused on population trends of 
vertebrate species across the marine, terrestrial and freshwater realms and how they 
relate to species’ geographic range, mean population size, habitat specificity and IUCN 
Red List status. Chapter 4 tested how gains and losses in forest cover change over time 
correspond with temporal shifts in population abundance, species richness and 
compositional turnover and additionally assesses the influence of historical baselines of 
forest loss and temporal lags in biodiversity responses. Chapter 5 presents a synthesis 
of my research findings and discusses their broader implications, as well as future 
research directions. All results chapters (Chapters 2-4) represent stand-alone research 
papers and are either published or under review. My work involved collaboration with 
multiple biodiversity scientists and thus, all chapters represent collaborative work under 
my leadership. The contribution of each author is listed at the beginning of the chapters.  
 

Chapter 1: Introduction. Global change drivers such as climate change and land-use 
change are reshaping ecosystems around the world (IPBES, 2019), but their magnitudes 
are not uniform over space (Bowler et al., 2020) and over time (Ellis et al., 2013; Mihoub 
et al., 2017). Simultaneously with accelerating global change, biodiversity around the 
world is also shifting in terms of species’ abundances, the numbers of species present at 
local scales and the types of species that ecological communities represent (Blowes et 

al., 2019; Newbold et al., 2015). My thesis aimed to establish the quantitative links 
between global change variation around the world, species traits and the temporal trends 
in abundance, species richness and compositional turnover across taxa and at sites 
around the world. 
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Chapter 2: Representation of global change drivers across biodiversity datasets. 
Ecological communities around the world are under pressure from accelerating global 
change, yet we lack a quantitative understanding of how well monitoring captures 
variation in the intensity of different drivers and their effects on biodiversity (De Palma et 
al., 2018; IPBES, 2019). Trends from large-scale compilations of biodiversity records are 

often extrapolated to scenarios for the entire globe, but without accounting for how well 
databases represent the world, such extrapolations will be biased. I found that biodiversity 
data captured most of the variation in global change, but gaps still remained, particularly 
in capturing extreme climate change and relatively low intensities of global change. 
Biodiversity monitoring often started after the peak intensity in environmental change for 
drivers like primary forest loss, but more closely coincides with the period of rapid climate 
change. Filling the remaining global change gaps will allow us to better understand 
ongoing change and predict future trajectories for the Earth’s biota. This manuscript is 
currently in review at the journal Nature Ecology and Evolution. 
 

Chapter 3: Rare and common vertebrates span a wide spectrum of population 
trends. Population change is not unidirectional across different taxa and regions (Hefley 
et al. 2016; Ceballos et al. 2017; Leung et al. 2017), and species vary in their sensitivity 
to global change drivers (Betts et al., 2017; Fritz et al., 2009; Julliard et al., 2004). For 
example, species’ attributes such as rarity, conservation status, distribution and taxon are 
often assumed to predict variation in population change (Hutchings & Reynolds, 2004; 
Julliard et al., 2004; Shultz et al., 2005). However, there are very few empirical tests of 
the influence of rarity and conservation status on population change and extinction risk 
(Purvis et al. 2000b; O’Grady et al. 2004; Ripple et al. 2017a), and those that exist mostly 
focus on either specific taxa (Cardillo et al., 2004; Fritz et al., 2009; Jones et al., 2003) or 

focus on population declines rather than the full spectrum of population change (Purvis 
et al. 2000a; Fritz et al. 2009; Gilroy et al. 2016; Hefley et al. 2016; Ceballos et al. 2017a). 
In contrast to a common assumption that rare (or less abundant) species are more likely 
to be declining under anthropogenic change, I found that population trends cover a wide 
spectrum of change from losses to gains, which are not related to species rarity. Across 
six vertebrate taxa, my findings showed that amphibians were the only taxa that 
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experienced net declines over time, as well as the taxa most prone to population 
fluctuations. Overall, I found a wide spectrum of population declines across latitudes, 
biomes and taxa that was poorly explained by species rarity. As human activities continue 
to accelerate, a key research direction is to determine how rarity attributes and species 
traits interact with global change drivers and together influence biodiversity. This 

manuscript is published in the journal Nature Communications. 
 

Chapter 4: Landscape-scale forest loss as a catalyst of population and biodiversity 
change. Land-use change is the most important driver of biodiversity change in terrestrial 
ecosystems (IPBES, 2019; Kehoe et al., 2017; Maxwell et al., 2016; Newbold et al., 
2015), but a global attribution of land-use change (e.g., conversion of forests to 
agricultural fields) to biodiversity change through time is lacking (De Palma et al., 2018). 
By exploring the temporal dynamics between biodiversity change and forest cover 
change, we can compare historic baselines and lags in biodiversity responses. In my 
analyses, I found that responses of biodiversity to land-use change were complex (i.e., 
not unidirectional) and forest loss was concurrent with amplified gains and losses in 
population abundance and biodiversity over time. Lags in biodiversity change following 
large forest loss events were frequent and often extending up to half a century and were 
longer in taxa with longer generation times. My findings indicated both immediate and 
delayed biodiversity change following forest loss, highlighting the need for a long-term 
temporal perspective in biodiversity assessments. This manuscript is published in the 
journal Science. 
 

Chapter 5: Synthesis. Biodiversity responses to global change are heterogeneous, 
possibly because of cumulative or interactive effects of global change drivers on shifts in 

the Earth’s biota over time. In this chapter, I synthesised the results from my thesis. I 
discussed possible mechanisms behind how a mix of positive and negative biodiversity 
responses to global change can arise, including 1) interactions between global change 
drivers arising from simultaneous exposure to multiple types of environmental change, 
and 2) sampling and scale effects such as landscape-scale species pool size and dark 
diversity – species that could inhabit a given area or plot yet have not colonised thus far. 



Chapter 1. Introduction 

 7 

Finally, I highlight future research paths that can build on my thesis findings and further 
disentangle the complex effects of global change on the planet’s biodiversity.  

 
1.3 Global change is reshaping biodiversity worldwide 
 
All across the globe, species’ populations and the biodiversity of ecological assemblages 
are changing in complex ways, including declines, increases and no net changes in 
abundance and species richness and shifts in composition over time (Bernhardt-
Römermann et al., 2015; Biesmeijer, 2006; Blowes et al., 2019; Carvalheiro et al., 2013; 
Dornelas et al., 2014; Elahi, Connor, et al., 2015; Elahi, O’Connor, et al., 2015; IPBES, 
2019; Vellend et al., 2013). Against a backdrop of accelerating global change, we need 
empirical evidence of the sources of heterogeneous patterns of population and 
biodiversity change to inform global scale biodiversity policies and their translation into 
local-scale conservation. Differential exposure to drivers like climate change and land-

use change, together with varying vulnerability to threats, likely both influence the 
direction and magnitude of shifts in population abundance, species richness and 
community composition (Bowler et al., 2017, 2018, 2019, 2021; Callaghan et al., 2021; 
Crossley et al., 2021; Dornelas et al., 2014; Fritz et al., 2009; Newbold et al., 2015; van 
Klink et al., 2020; Williams et al., 2020; Williams & Newbold, 2021). Despite multiple calls 
for more comprehensive biodiversity attribution analyses (De Palma et al., 2018; IPBES, 
2019; Mazor et al., 2018; Sirami et al., 2017), our current knowledge has largely been 
limited by the paucity of large-scale temporal biodiversity data and planetary-scale 
information on the intensity of drivers like land-use change and climate change.  
 
More and more open-access biodiversity and population data are accumulating 
Recent compilations of long-term population (LPI, 2016; Santini et al., 2018; van Klink et 
al., 2021) and biodiversity time series (Bruelheide et al., 2019; Dornelas et al., 2018), 
together with data on species traits (Bjorkman, Myers‐Smith, et al., 2018; Jones et al., 
2009; Kattge et al., 2020; Wilman et al., 2014) and global layers of human-driven 
environmental change (e.g., Bowler et al., 2020; Hansen et al., 2013; Karger et al., 2017), 
allow us to quantitatively test the factors explaining biodiversity change at sites around 
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the world (Franklin et al., 2017; Hampton et al., 2013; Wüest et al., 2020). The rise of 
open-access ecological data has spearheaded biodiversity assessments, scenario 
development for future biodiversity trajectories and has launched a new era for data 
syntheses across temporal, spatial and taxonomic scales (IPBES, 2019; Leclère et al., 
2020; Thuiller et al., 2019). Unravelling how global change drivers are reshaping Earth’s 

biota and which types of species are most at risk of declines can provide  evidence that 
can then be used to create scenarios and predictions for ecological changes across the 
Anthropocene (IPBES, 2019; Mazor et al., 2018; Sirami et al., 2017). 
 
Population and biodiversity change are connected 
Biodiversity change is multi-faceted and occurs on multiple inter-connected spatial and 
temporal scales (Figure 1.2). Shifts in population abundance can lead to changes in the 
richness and composition of ecological assemblages (Leung et al., 2017). Investigating 
changes in the abundance of populations around the world can provide valuable insight 
into the processes that ultimately alter species richness, community composition, 
functional diversity and genetic diversity (Leung et al. 2017). Community composition can 
change without directional trends in species richness (Dornelas et al., 2014; Hillebrand et 
al., 2018; Magurran et al., 2018; Vellend et al., 2013) and following both species richness 
gains or losses (Baeten et al., 2014). Comprehensive detection and attribution analyses 
ought to quantify the full spectrum of biodiversity trends (McGill et al. 2015; Magurran et 
al. 2018; Primack et al. 2018; Yoccoz et al. 2018). Population and biodiversity change 
impact on the available genetic pool in a given area which can then have implications for 
future population and biodiversity dynamics (Hastings & Harrison, 1994). Such population 
and biodiversity changes can lead to shifts in ecosystem functioning through changes in 
the dominant species traits of a community (Loreau, 2001). In this thesis, I studied 

temporal trends in both populations and ecological assemblages to gain a better 
understanding of the drivers of biodiversity change in the Anthropocene. 
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Figure 1.2. Global change is reshaping terrestrial and marine biodiversity, leading 
to shifts in population abundance, species richness and the composition of 
ecological assemblages (turnover). Population change, richness change and turnover 
represent different facets of biodiversity change that together provide more 
comprehensive insights into the different ways in which biodiversity is being altered 
across the Anthropocene. Species illustrations by Malkolm Boothroyd. 
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1.4 Rarity traits might explain heterogeneous biodiversity 
and population trends 
 
Understanding what factors best explain population change and extinction risk has been 
a key focus in population ecology and conservation biology and possible measures 
include species’ attributes and traits, such as rarity proxies like geographic range (Cardillo 
et al., 2004; Collen et al., 2009; Gaston & Blackburn, 1995; O’Grady et al., 2004; Olden 

et al., 2007; Owens & Bennett, 2000; Purvis et al., 2000; Ripple et al., 2017). Population 
declines can lead to local extinction of populations and eventually potential global 
extinction of species (Ceballos et al. 2017). Extinction risk, the likelihood that a species 
will go extinct within a given time frame (Mace et al., 2008), is widely assumed to increase 
when species are rare (i.e., they have small geographic ranges (Jones et al., 2003), small 
population sizes (Green, 2003) and are very specialised (Gilroy et al., 2016) or a 
combination of the three (Rabinowitz, 1981). Rare species with small populations are 
more likely to undergo stochastic fluctuations that could lead to extinction at any point as 
per population dynamics theory (Lande, 1993; Melbourne & Hastings, 2008) and are more 
susceptible to inbreeding (Hanski, 1998; Kareiva, 1990). Allee effects, the positive 
relationship between population growth rate and population density, further increase the 
likelihood of declines due to low reproductive output once populations reach a critically 
low density (Dennis et al. 2016b; Sun 2016). Small populations from rare species are 
thought to be more likely to experience population declines (Hutchings & Reynolds, 2004; 
Manne & Pimm, 2001; McKinney, 1997; Purvis et al., 2000). Cross-taxa and cross-biome 
empirical tests of the traits best explaining population declines have yet to be undertaken 
at global scales.  
 

1.5 Varying exposure to global change could broaden the 
spectrum of biodiversity and population trends 
 
Spatial and temporal variation in population and biodiversity change might be explained 
by both past and present local environmental factors and anthropogenic drivers (Betts et 
al., 2017; Brook et al., 2006; Fritz et al., 2009; Jung et al., 2019; Jung, Rowhani, & 
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Scharlemann, 2019; Phillips et al., 2017). Biodiversity has been influenced by human 
activities for millennia and contemporary biodiversity change might be a continuation of 
trends that first started in the distant past (Ellis et al., 2013; Mottl et al., 2021). Since the 
start of the Industrial Revolution in the 1800s, the rate of species extinctions has 
increased relative to the background rate of extinction as estimated based on fossil 

records (Barnosky et al., 2011; De Vos et al., 2015; Pimm et al., 2014). More recently, 
both gains and losses in local-scale population abundance and species richness have 
been observed over time, which were frequently paralleled with changes in community 
composition (Bowler et al., 2021; Leung et al., 2017, 2020; Rosenberg et al., 2019; 
Spooner et al., 2018; van Klink et al., 2020; van Strien et al., 2016). Attributing 
heterogeneous biodiversity change to its drivers is critical to determine the impacts of 
human activities on the world’s ecosystems and on the services that they provide for 
society (IPBES, 2019). 
 
Human exploitation of natural resources (hereafter, “human use”) and climate change are 
the two main types of global change influencing biodiversity across the terrestrial and 
marine realms (Bowler et al., 2020; IPBES, 2019; Maxwell et al., 2016; Pereira et al., 
2012). In terrestrial ecosystems, land-use change, habitat fragmentation and urbanization 
have altered the species composition of many communities through local extinctions, 
recolonizations and changes in community evenness (Marta et al., 2021; Newbold et al., 
2015; Supp & Ernest, 2014). Conversion of natural habitats to agricultural land has led to 
the decline of many common (Donald et al., 2006; Gaston & Fuller, 2007) and rare 
species (Clark & Tilman, 2008) and has homogenised ecological communities by creating 
environmental conditions in which only certain kinds of species can survive (Smart et al., 
2006; Vellend et al., 2007). The spread of invasive species has similarly been linked to 

biotic homogenization in both terrestrial and aquatic ecosystems (Kortz & Magurran, 
2019; Magurran et al., 2015; Muthukrishnan & Larkin, 2020). Warmer temperatures have 
been linked with species range shifts (Pecl et al., 2017), vegetation change in high-
latitude systems (Myers-Smith et al., 2015), biodiversity declines (Dawson et al., 2011; 
Parmesan & Yohe, 2003), but also population increases (Bowler et al., 2017). Rising 
water temperatures, increased nutrient fluxes and pollution have modified marine 
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systems (Crain et al., 2008; Halpern et al., 2008; Tittensor et al., 2010), driving changes 
in species richness, abundance and composition (Elahi et al., 2015; García Molinos et 
al., 2015). In both terrestrial and aquatic ecosystems, global change, such as human use 
of ecosystems and climate change, is restructuring the planet’s biodiversity (IPBES, 
2019). 

 
The different drivers of population and biodiversity change do not act in isolation (Dawson 
et al., 2011; de Chazal & Rounsevell, 2009; Findell et al., 2017). One of the biggest 
challenges in biodiversity research is disentangling biodiversity change caused by 
multiple simultaneously occurring drivers from naturally occurring variation due to 
fluctuations in populations and communities (Buschke et al., 2021; De Palma et al., 2018; 
Magurran & Dornelas, 2010). Furthermore, we do not know how ecosystems will respond 
to global change drivers in the long term, as there might be lag effects and threshold 
points (Isbell et al., 2019; Jackson & Sax, 2010; Pardini et al., 2010). Alternatively, 
communities might adapt, thus leading to decreased impacts of global change drivers 
with time (García Molinos et al., 2015). Biodiversity syntheses are a key step towards 
understanding how global change drivers impact biodiversity across spatial and temporal 
scales (de Chazal & Rounsevell, 2009; IPBES, 2019; Mihoub et al., 2017; Sirami et al., 
2017).  
 

1.6 Biodiversity syntheses are challenged by data gaps 
 
The temporal, spatial and taxonomic scales of investigation influence the direction and 
magnitude of detected biodiversity change (Bernhardt-Römermann et al., 2015; Chase et 
al., 2018, 2019; Jarzyna & Jetz, 2018; Keil & Chase, 2019; Korell et al., 2021; Levin, 
1992; Murphy & Lenoir, 2021; Seabloom et al., 2021; Whittaker et al., 2005). Even though 
we now have more biodiversity data than ever before, there are still numerous data gaps 
remaining in the monitoring of species across time, space and taxa. Such missing 
information challenges the quantification of biodiversity trends in the Anthropocene and 
can translate into biases in study findings. For example, cross-taxa global syntheses are 
usually dominated by vertebrate versus invertebrate data. Some gaps in data cannot be 
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filled, for example when it comes to biodiversity monitoring in the more distant past, while 
spatial and taxonomic coverage is more easily improved. Additionally, even if data for the 
species or areas of interest are available, the data might be from one spatial or temporal 
scale, while the impacts of global change might be more evident at a different scale. 
Biodiversity data collected at small local scales might not capture the effects of drivers 

that act at larger spatial scales like climate change (Keil et al., 2012). Accounting for data 
gaps and scale effects by statistically modelling historical baselines, temporal 
mismatches, geographic and taxonomic gaps can improve biodiversity estimates and 
provide stronger evidence for policy and conservation actions (Dias et al., 2021; Gomez 
et al., 2018; Humbert et al., 2009; Isaac et al., 2014; Schrodt et al., 2015).  
 
Historical baselines and temporal mismatches 
Biodiversity monitoring often starts after the peak intensity of a global change driver, 
introducing mismatch between when a driver might have exerted the highest impact and 
when we monitor its effects (Mihoub et al., 2017). Such mismatches can lead to a false 
underestimation of the impacts of global change on biodiversity and can hinder 
conservation efforts, highlighting the importance of incorporating historical baselines 
(Bjorkman & Vellend, 2010; Mihoub et al., 2017). The non-random selection of study sites 
can further bias estimates of biodiversity change and its link to global change (Fournier 
et al., 2019). In a conservation context, species- or assemblage-level monitoring often 
begins after a species is already declining while for behavioural or evolutionary studies 
there is a tendency to choose sites with high species abundance. Additionally, long-term 
monitoring sites are often selected in places with no major threats to ensure the longevity 
of the monitoring programme, thus excluding sites where major human development is 
likely in the future. When data collected for different purposes are brought together in 

global databases, the resulting data compilation will likely include time series with both 
unnaturally high and low biodiversity, creating a baseline for future comparisons that 
might not necessarily reflect the long term trajectory of a population or assemblage 
(Fournier et al., 2019; Wauchope et al., 2019, 2021). Temporal gaps in data are some of 
the hardest to fill, particularly relating to monitoring in the past, but integrating biodiversity 
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records with historical trajectories of global change can improve research by providing a 
long-term context to recently collected biodiversity data. 
 
Geographic and taxonomic data gaps 
Despite the rise of open-access data in ecology, many regions and taxa are poorly 

studied, such as the tropics, Arctic, invertebrates in general and species living in the deep 
sea and below the soil surface. Geographically, there are mismatches between research 
effort and global change intensity around the world. For example, the Arctic is 
experiencing the highest rates of climate warming but is understudied due to extreme 
climate, travel distances and logistical challenges (IPCC, 2021). Studying places like the 
Arctic is expensive and comes at a time when much of conservation funding is already 
allocated to monitoring (Buxton et al., 2020). However, concentrating research to the 
more accessible parts of the world can bias our knowledge of the impacts of global 
change on biodiversity. Taxonomically, winner and loser species could emerge at the 
scales of narrow evolutionary units, like individual families, or broad, like entire phyla 
(Dornelas et al., 2019; Finderup Nielsen et al., 2021; Jarzyna & Jetz, 2017; Jetz, 2002; 
Jetz et al., 2004; Pecl et al., 2017; Rosauer et al., 2017). However, many taxa such as 
invertebrates, fungi or belowground biodiversity remain poorly studied with hundreds to 
thousands of species yet to be identified. Uneven data collection across the tree of life 
risks missing the early signs of species decline and biodiversity loss or conversely, if 
monitoring stops once a population is stable, the long-term impacts of conservation 
interventions could remain unknown. Such geographic and taxonomic gaps in biodiversity 
monitoring stem from 1) the Linnaean shortfall (the Earth’s biodiversity has yet to be fully 
sampled and classified and 2) the Wallacean shortfall (we do not have comprehensive 
distribution data for all known species, Whittaker et al. (2005)). Limitations due to data 

gaps can be at least party addressed using large open-access databases, such as GBIF 
(GBIF, 2018), the Living Planet Database (LPI, 2016), PREDICTS (Hudson et al., 2017) 
and BioTIME (Dornelas et al., 2018). However, existing data are of varying quality, 
potentially introducing noise and error into biodiversity syntheses. When calculating 
indicators of change using open-access big ecological data, we can partially account for 
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variable data quality using data filtering to remove false records (especially when using 
GBIF data, Franklin et al. 2017; Serra-Diaz et al. 2017).  
 
 

1.7 Scale effects in biodiversity change 
 
Gaps in biodiversity data interact with scale effects in biodiversity detection and 
attribution. For example, global change data are not always available at a resolution fine 
enough to match the scales at which species might respond to disturbance, particularly 
for species with small roaming ranges. Additionally, even if on the landscape scale there 
is habitat change, some species might be able to persist in remaining refugia or suitable 
microclimates. Spatially, the effects of land-use change on biodiversity are known to 
decrease as study area increases (Chase et al. 2018), whereas the impacts of climate 
change are likely stronger at larger spatial scales (Keil et al., 2012). Thus, landscape-
level habitat changes might not always translate to local-scale biodiversity change. The 
findings of global loss of species and local no net change are not necessarily in 
opposition, because at small spatial scales, local extinctions and colonization can be 
balanced, at regional scales the spread of invasive species could contribute to species 
richness gain, and at planetary scales, overharvesting and habitat change can lead to 

species extinction (McGill et al., 2015; Vellend, Dornela et al., 2017). At local scales, 
biodiversity losses could be balanced with gains over time due to community re-assembly 
and self-regulation, and as a result, richness and abundance could remain stable 
(Dornelas et al., 2014; Gotelli et al., 2017; Hill et al., 2016; Magurran et al., 2018; McGill 
et al., 2015; Sax & Gaines, 2003; Supp & Ernest, 2014; Vellend, Baeten, et al., 2017; 
Vellend et al., 2013; Yoccoz et al., 2018). At global scales, species are going extinct 
quicker than the evolutionary scales of speciation, causing biodiversity loss at the 
planetary scale (Barnosky et al., 2011). The mounting evidence for variation in 
biodiversity change highlights the need to determine the traits and drivers to which we 
can attribute variation in biodiversity trends, but such studies have to account for scale 
effects and possible mismatches between biodiversity-driver relationships at different 
scales. 
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1.8 Heterogeneous biodiversity change has implications 
for international policy and conservation 
 
As society moves forward with the post-2020 Global Biodiversity Framework, we need 
reliable scenarios for the future of biodiversity and indicators to quantify progress towards 
conservation goals (Hansen et al., 2021; Jetz et al., 2019; Pereira & Cooper, 2006). 
Examining the drivers of temporal shifts in individual species’ populations and entire 
ecological assemblages provides evidence for conservation decision-making (Batt et al., 
2017; Ehrlén & Morris, 2015; Hefley et al., 2016; O’Grady et al., 2004). Biodiversity 
indices like the Biodiversity Intactness Index (BII) (Scholes & Biggs, 2005) or the Living 
Planet Index (LPI) (Lambertini, 2020; McRae et al., 2017) aim to summarise broad trends 
in biodiversity and are used in global assessments and scenarios for the future (IPBES, 
2019). However, indices can mask important heterogeneity in biodiversity trends and are 
susceptible to bias from the assumptions made when calculating them, random 
fluctuations and data gaps (Buschke et al., 2021; Leung et al., 2020). Additionally, 
conservation actions are predominantly implemented on smaller, country-specific, 
regional or local scales (Guerrero et al., 2013; Mills et al., 2010), while scenarios and 
indicators are often calculated across taxa and on planetary scales (Agardy, 2005; 
Pressey et al., 2007). Similarly, overall species’ Red List status is determined on a global 

scale based on multiple criteria (Mace et al., 2008), but species’ global status might differ 
from its national or regional status. On a local scale, populations might vary in the 
direction and magnitude of experienced abundance change, creating contrasts with Red 
List statuses (Ehrlén & Morris, 2015; Gilroy et al., 2016; Lawson et al., 2015; Leung et al., 
2017; van Strien et al., 2016). Heterogeneous population and biodiversity trends on local 
scales can be masked by global average trends, thus risking the danger of not noting 
biodiversity declines early enough to be able to reverse them. By quantifying the nuance 
and full distribution of the impacts of global change drivers on biodiversity, we can better 
understand ongoing shifts in Earth’s biota and predict future trends and their 
consequences for ecosystems and humanity.  
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1.9 Methods 
 
My thesis combined multiple open-access databases which together provided information 
on population change, biodiversity change, species traits and global change drivers. The 
key data sources and statistical workflows are listed below, with additional details 
provided in the Methods sections of each data chapter. 
 
Living Planet Database (Chapters 2, 3 and 4) 
The Living Planet Database includes 9284 vertebrate population time series from different 
taxa across the terrestrial, marine and freshwater realms and between 1970 and 2014 
(note that not all populations were monitored across the entire time period, LPI 2016). 
These time series represented repeated monitoring surveys of the number of individuals 
in a given area, hereafter called “populations”. The survey methods and study areas 
varied among time series but were consistent within time series. The Living Planet 
Database is available at https://livingplanetindex.org/data_portal.  
 
BioTIME database (Chapters 2 and 4) 
The BioTIME database includes 332 studies of assemblage time series, which together 

result in over 14 million abundance records of species within ecological communities 
(Dornelas et al., 2018). There are almost 50 thousand species represented in the 
database. BioTIME spans over terrestrial, marine and freshwater realms. As with the 
Living Planet Database, survey methods varied, including plots, transects and more, but 
were consistent within time series. The studies part of BioTIME vary largely in size which 
is why I used the rarefied version of BioTIME (see Blowes et al., (2019) for details), where 
studies were split by cells of approximately 96 km2, producing 44 532 time series. For 
example, some marine studies done on ships covered very large areas and were split 
into multiple time series. If there were two studies within the same cell, their identities 
were kept separate and data from different studies were not combined. The BioTIME 
database is available at https://biotime.st-andrews.ac.uk.  
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The large temporal, geographic and taxonomic scales of the databases I used allowed 
me to answer key questions about how Earth’s ecosystems are changing in the 
Anthropocene (Table 1.1, Figure 1.3). The Living Planet and BioTIME Databases 
represent the two largest ecological time series open-source databases currently 
available. Additionally, in Chapter 2 I used the PREDICTS database to quantify global 

change variation across the locations of the Living Planet, BioTIME and PREDICTS 
databases and provide context for recent findings emerging from biodiversity syntheses 
(Blowes et al., 2019; Dornelas et al., 2014, 2019; Newbold et al., 2018; Newbold et al., 
2015; Vellend et al., 2013). From the PREDICTS database I only used the geographical 
coordinates of each site and not the biodiversity data themselves, because the goal was 
to extract the magnitudes of global change drivers at the sites sampled by the database. 
From the Living Planet and BioTIME databases I used both the site coordinates (Chapter 
2) and the population and biodiversity information (Chapters 3-4). Since the key 
questions in my thesis revolve around temporal biodiversity change and its drivers, I used 
time series databases (Living Planet and BioTIME) in Chapters 3 and 4. Both the Living 
Planet and BioTIME databases are living and growing compilations of ecological data. As 
more data become available and ongoing and future monitoring begins to fill in the 
taxonomic and geographic gaps in existing datasets, we will be able to re-assess and test 
the generality of the patterns of population change across biomes and taxa. 
 
Table 1.1 Number of time series per taxa in the Living Planet and BioTIME 
databases. Note that the sample size for each analysis different depending on the 
specific research question (see Methods sections in each chapter for details). 

Database Realm Taxa Time series 

Living Planet  
(Chapters 2, 3 and 4) 

Terrestrial Amphibians 46 
 Birds 3447 
 Mammals 1036 
 Reptiles 111 

 Marine Ray-finned fish 1120 
  Birds 1001 
  Sharks and rays 131 
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  Mammals 289 
  Reptiles 160 
BioTIME  
(Chapters 2 and 4) 

Terrestrial Terrestrial plants 177 

  Birds 1600 

  Mammals 40 
  Terrestrial invertebrates 71 
  Multiple taxa 30 
  Amphibians 273 
 Marine Birds 9438 
  Fish 24 297 
  Mammals 480 
  Marine invertebrates 2044 
  Benthos 4383 
  Multiple taxa 1538 
  Marine invertebrates/plants 161 
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Figure 1.3. My thesis synthesises population and biodiversity time series data 
across space, time and taxa. The high number of records in Europe from very similar 
locations obscures some of the records. Please see the original data papers for each 
database (LPI, 2016 and Dornelas et al., 2019) that offer more detailed visualisations of 
data points. Note that the time scales on c and d are different to allow the visualisation of 
variation in the population time series.  
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Global change layers 
To quantify the magnitude of different global change drivers, I used several global gridded 
datasets from which I extracted driver magnitude across the locations of biodiversity sites 
(Figure 1.4).  
 

The marine and terrestrial harmonised layers developed by Bowler et al. (2020) were 
used in Chapter 2 (Appendix 1.3). As in Bowler et al. (2020), I grouped the 16 layers into 
five categories: human use (land-use for the terrestrial realm, and exploitation for the 
marine realm), climate change, human population density, pollution and invasion 
potential. The driver data were harmonised to a standard spatial grid with a resolution of 
100 km2 and were aggregated over the time period between 1990 and 2010.  
 
I used the Land Use Harmonisation (LUH, Hurtt et al., 2011) database of reconstructed 
historical land cover at a 0.25° resolution to extract land cover estimates over a long 
historic period (from the year 800 to 2014). The LUH database featured in Chapter 2 
(primary forest cover) as well as in Chapter 4 (primary and secondary forest cover). 
 
I used the CRU TS v4.05 database (Harris et al., 2020) to obtain terrestrial monthly 
surface air temperature at a spatial resolution of 0.5°. For the marine realm, I extracted 
sea surface temperature at a spatial resolution of 2° from the NOAA Extended 
Reconstructed SST v5 database (Huang et al., 2017). These data were used in Chapter 
2 to calculate the magnitude of temperature change over time across the sites part of the 
Living Planet, BioTIME and PREDICTS databases. 
 
I extracted contemporary forest cover change from the Global Forest Change (GFC) 

database (2000 – 2016, forest loss and gain at a 30 m resolution, Hansen et al., 2013), 
also from the ESA Landcover database (1992 – 2015, 300m resolution, (ESA Climate 
Change Initiative, 2017). I calculated habitat transitions using the MODIS Landcover 
database (2000 – 2013, 500m resolution, (Channan et al., 2014). These data, together 
with the LUH dataset, were used in Chapter 4. 
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Figure 1.4. My thesis research used different gridded datasets to quantify the 
intensity of global change drivers across sites with population and biodiversity 
time series. 
 
 
Statistical approaches and workflow 
In analysing multiple global datasets together, I needed to account for the different data 
structures and varying replication across space, time and taxonomy. Broadly, the two key 
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statistical approaches that I used were hierarchical models and general linear models, 
both based on Bayesian inference. The specific details around statistical models are 
outlined in each results chapter (Chapter 2-4). In Chapter 2, I extracted the magnitudes 
of different global change drivers across sites from the Living Planet, BioTIME and 
PREDICTS databases. In this chapter, I focused only on the global change drivers to test 

for example whether one database has more disturbed sites than another. The global 
change magnitudes were the response variable in a general linear model comparing 
global change across the different biodiversity databases, as well as across a random 
sampling of global change across the globe (driver magnitude as a function of an 
interaction term between two categorical explanatory variables – driver type and data 
source; data source was either Living Planet, BioTIME, PREDICTS or random global 
sampling). In Chapters 3 and 4, I used a two-stage analysis process. First, I calculated 
population change (trend from state-space models), richness change (slope from linear 
mixed effect model modelling richness versus year), compositional turnover (the turnover 
component of beta diversity, partitioned as per (Baselga, 2010) and using Jaccard’s 
dissimilarity comparing assemblage composition at the start and end of time series). 
Second, I modelled population trends, richness trends and turnover across biomes, taxa 
and rarity trends in Chapter 3, and across forest cover change in Chapter 4. Sensitivity 
analyses using the BioTIME databases have showed that calculating turnover is not 
biased by using the first versus second year of the time series (Blowes et al., 2019; 
Dornelas et al., 2014). Overall, my thesis tested the links between the patterns of 
biodiversity change and the variation in global change around the world, spanning realms, 
taxa and biomes. 
 

1.10 Additional projects complimentary to PhD research 
During my PhD, I also completed two research internships and two Arctic field 
expeditions, and I also contributed to multiple research collaborations and two working 
groups. These projects all had biodiversity change at its core and provided different 
perspectives to the core topic of drivers of biodiversity change in the Anthropocene. The 
abstracts of the research papers stemming from these projects are included as 
appendices and summarised below. 
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Species pools and dark diversity across the tundra biome (National Geographic Early 
Career Explorer project, International Tundra Experiment (ITEX) network collaboration, 
Appendix 1.1). 

The Arctic is warming at three times the rate of the global average (IPCC, 2021) 

and tundra plants are responding by increasing in cover, abundance and height 
(Bjorkman et al., 2020; Bjorkman, Myers-Smith, et al., 2018; Myers-Smith et al., 2011). 
Much of the evidence behind tundra vegetation change comes from small survey plots, 
leaving the landscape context of ongoing local-scale changes unknown. To fill this 
knowledge gap, I co-developed a monitoring protocol with the ITEX network aiming to 
quantify the species pool size around long-term monitoring tundra sites and their dark 
diversity (https://osf.io/agdfq/). I defined dark diversity using a temporal perspective as all 
the species that were present in the species pool but were never recorded inside the long-
term plots across the duration of the monitoring. I completed the protocol on Qikiqtaruk-
Herschel Island in 2018 and 2019, and other researchers completed it on further 15 
tundra research sites, making for a total of 36 plant communities sampled. I found that 
dark diversity across the tundra varied from zero to nearly 100 species. Sites with higher 
dark diversity had experienced less compositional changes over time, but as these sites 
have a high colonization potential, dark diversity might be the fuel for future biodiversity 
change. Many of the data from the databases I used across my thesis come from plots 
similar to those in the Arctic, and this project aims to find the sources of biodiversity 
change observed at local scales (i.e., warmer versus colder, wetter versus drier parts of 
the landscape). I am leading an in-prep. manuscript based on this project (Daskalova, 
G.N., and the ITEX species pool consortium. Dark diversity across the tundra biome. In 
prep for Global Change Biology). 

 
Land abandonment and population change in Europe (Research internship with Prof 
Henrique M. Pereira, German Centre for Integrative Biodiversity Research (iDiv), 
Appendix 1.2). 
 Land-use change processes occur over a wide spectrum, from land-use 
intensification (e.g., when forests are converted to fields) to land abandonment (when 
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fields are no longer used for agriculture). In Europe, land-use intensification and land 
abandonment often occur in parallel, despite these two processes representing the 
extremes of land-use change (e.g., from forest to agricultural field, and from agricultural 
field to eventually forest, (Donald et al. 2006; Rey Benayas 2007; Sanderson et al. 2013; 
Crouzeilles et al. 2016). In recent years, rates of land abandonment have outpaced rates 

of land-use intensification and yet, the effects of land abandonment on biodiversity remain 
unknown. A major knowledge gap is whether abandoned land supports ecosystems 
similar to those prior agricultural use, or it creates novel ecosystems with unprecedented 
species composition. For my internship at iDiv, I asked how land abandonment in Europe 
varies over space and time, what the dominant land cover trajectories are following 
abandonment, and how vertebrate population abundance had changed in areas with land 
abandonment. I found that land abandonment had nearly doubled across Europe 
between 2009 and 2020. In areas with abandonment, vegetation cover was denser and 
taller, and vertebrate abundance was higher. By studying the effects of land abandonment 
and the shift from agricultural to semi-natural land, this project particularly well 
complements the research in Chapter 4 which focused on forest loss and biodiversity 
change. I am leading an in prep. manuscript based on this project (Daskalova, G.N. and 
Pereira, H.M. Herbivorous mammals and carnivorous birds benefit from land 
abandonment in EU countries. In prep. for Ecology Letters). 
 
Methods to account for temporal pseudoreplication in biodiversity time series 
analysis (In collaboration with Dr Isla Myers-Smith and Dr Albert Phillimore, Appendix 
1.3). 

The rise of open-access data in ecology has facilitated macroecological studies 
spanning space, time and taxa, but the analysis of such data come with numerous 

challenges (Wüest et al., 2020). While the implications of spatial pseudoreplication have 
long been recognised in ecology (Hurlbert, 1984), statistically accounting for temporal 
pseudoreplication has remained a more contentious issue (Daskalova et al., 2021; 
Seibold et al., 2021). In both local and regional, and sometimes even larger, studies data 
from different sites but from the same year are likely correlated. For example, certain 
years can be exceptionally good or bad for certain species, and particularly when such 
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years occur at the start of a monitoring time series, they can skew overall estimated 
temporal trend because of a false baseline effect. Such was the case in a regional study 
in Northern German by Seibold et al. (2021) where the authors accounted for spatial but 
not for temporal pseudoreplication. I lead a re-analysis of the Seibold et al. (2021) data 
and demonstrated that after including a year random intercept term in the statistical 

models analysing invertebrate change over time, five out of six reported declines become 
non-significant. This reanalysis illustrates that statistical designs can dramatically 
influence the determined statistical significance of quantitative analyses of population and 
biodiversity trends over time. More statistically conservative approaches better capture 
the errors including year effects inherent in population and biodiversity monitoring. This 
project provides methodological context to all analyses in my thesis and is published as 
“Daskalova, G. N., Phillimore, A. B., & Myers‐Smith, I. H. (2021). Accounting for year 
effects and sampling error in temporal analyses of invertebrate population and 
biodiversity change: a comment on Seibold et al. 2019. Insect Conservation and 
Diversity, 14(1), 149-154”. 
 
Highlighting a balanced view of insect trends (In collaboration with Dr Maria Dornelas, 
Appendix 1.4). 

Building on my previous project on analysing invertebrate trends and statistical 
methods, I also worked together with Dr Maria Dornelas on an invited perspective piece 
in Science commenting on the analysis of van Klink et al., (2020). van Klink et al. (2020) 
conducted a meta-analysis of insect abundance and biomass changes over time across 
the terrestrial and freshwater realms and found declines on land but increases in 
freshwater ecosystems. Our perspective highlighted the importance of communicating 
the nuance around biodiversity change, particularly given that insect change has become 

a standout topic for both the media and policy-makers. By shifting our perspective on the 
full distribution of biodiversity change instead of focusing solely on mean values and 
summary indicators, we can understand more about the causes of biodiversity gain and 
loss and better target conservation actions. This perspective is published as “Dornelas, 
M., & Daskalova, G. N. (2020). Nuanced changes in insect 
abundance. Science, 368(6489), 368-369”. 
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Ecosystem change following mammal reintroductions in Australia (Research 
internship with Prof Richard Hobbs, University of Western Australia, Appendix 1.5). 
 Species reintroductions are an increasingly popular form of active conservation 
management, particularly following local extinctions of keystone species (Seddon et al., 

2007). In Australia, the reintroduction of digging mammals has been suggested as a way 
to reverse the ecosystem damage from livestock farming and overgrazing (Palmer et al., 
2020). For my internship at UWA, I worked together with Bryony Palmer (PhD student) 
and Prof Richard Hobbs. Since my PhD used already available data and was conducted 
at very large spatial scales, the project at UWA was an opportunity to study the impacts 
of conservation interventions following land-use change in greater detail. The project 
resulted in the following publication: “Palmer, B. J., Valentine, L. E., Lohr, C. A., 
Daskalova, G. N., & Hobbs, R. J. (2021). Burrowing by translocated boodie (Bettongia 
lesueur) populations alters soils but has limited effects on vegetation. Ecology and 
Evolution, 11(6), 2596-2615”. 
 
Upscaling of individual species dynamics to community trends in biodiversity and 
composition using vegetation change data sets (sREplot working group, German 
Centre for Integrative Biodiversity Research (iDiv), Appendix 1.6) 
 Changes in the composition of ecological communities are widespread around the 
world and more common than shifts in species richness (Blowes et al., 2019). One of the 
remaining unknowns is what types of species are becoming more or less common and 
what implications that has for ecosystem functions and services. As a member of the 
sREplot working group, I contributed to an analysis testing how the geographic range of 
plant species in forest, tundra and grassland habitats relates to their likelihood to persist, 

go extinct or colonise. By focusing on plants, this project provides a compliment to 
Chapter 3 where I studied species’ geographic range and vertebrate population trends. 
The resulting manuscript is published as a preprint and is currently in review at Ecology 
Letters: “Staude, I., Pereira, H. M., Daskalova, G. N., Bernhardt-Römermann, M., 
Diekmann, M., ... & Baeten, L. (2021). Consistent replacement of small- by large-ranged 
plant species across habitats. EcoEvoArxiv. DOI: 10.32942/osf.io/ujky2.” 
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Quantifying temporal change in traits across taxa and the globe (sTeTra working 
group, German Centre for Integrative Biodiversity Research (iDiv),) 
 By quantifying changes in functional diversity, we can link local-scale biodiversity 
change with ecosystem function and determine the wider consequences of changes in 

community composition. As a member of the sTeTra working group, I will contribute to 
the synthesis of the BioTIME database with trait databases to test for directional shifts in 
traits such as body size across taxa and biomes. The first meeting of the sTeTra working 
group is scheduled for October 2021. The working group builds on my studies of 
biodiversity change and global change drivers (Chapters 2 and 4) and will also explore 
the interactions between trait change and the intensity of human activities. 
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Database can be accessed on Zenodo (https://doi.org/10.5281/zenodo.1211105) or 
through the BioTIME website (http://biotime.st-andrews.ac.uk/). PREDICTS can be 
downloaded from https://www.predicts.org.uk/pages/outputs.html. A GitHub repository 
(https://github.com/gndaskalova/GlobalChangeSpace) contains the database of 
biodiversity data locations and associated global change driver magnitudes I compiled, 

as well as my code. I completed a pre-registration on the Open Science Framework 
(https://osf.io/qjr27/?view_only=56d98233baa047fcb2d5fe554103f01e) for the global 
change representation research questions but note that the PREDICTS database was 
added to the analyses after the pre-registration was submitted. 
 

2.1 Summary 
 
Global change has altered biodiversity and impacted ecosystem functions and services 
around the planet. Understanding the effects of anthropogenic drivers like land-use 
change, fishing, human exploitation of natural resources and climate change on 
biodiversity change has become a key challenge for science and policy. However, our 
knowledge of biodiversity change is limited by the available data and their biases. Over 
land and sea, I tested the representation of three worldwide biodiversity databases (Living 
Planet, BioTIME and PREDICTS) across geographic and temporal variation in global 

change and across the tree of life. I found that variation in global change drivers is better 
captured over space than over time around the world and across the previous 150 years. 
Spatial representation of global change was as high as 78% in the marine realm and 31% 
on land. Among the five global change drivers I tested, climate change and pollution in 
marine ecosystems were sampled the most representatively by the Living Planet and 
BioTIME databases. Across all types of global change that I studied, the mid-range of 
intensities was the best sampled, leaving intact and heavily impacted areas 
underrepresented in biodiversity databases. Contemporary warming was better captured 
in biodiversity time series relative to drivers like forest loss for which the peak disturbance 
often occurred decades to centuries before the start of biodiversity monitoring. My 
findings suggest ways to improve the use of existing biodiversity data and better target 
future ecological monitoring. 



Chapter 2. Global change representation 

 55 

2.2 Introduction 
 
Human activities are reshaping the planet from the tropics to the poles and across land 
and sea (Bowler et al., 2020; Ellis et al., 2013; IPCC, 2014), and the Earth’s biodiversity 
is shifting in response (IPBES, 2019). Parallel with this rapid biotic reorganization, an 
ecological data revolution is underway with more open-access data available now than 

ever before (Culina et al., 2018; Hampton et al., 2013). Large-scale data compilations 
(e.g., Living Planet (WWF, 2018), BioTIME (Dornelas et al., 2018), PREDICTS (Hudson 
et al., 2017), GBIF (GBIF, 2021), TetraDensity (Santini et al., 2018)) have been analysed 
to test general patterns of biodiversity change across the world and impacts of 
anthropogenic drivers, such as land-use change, climate change and human exploitation 
of natural resources (Chapter 4; Antão et al., 2020; IPBES, 2019; McCallen et al., 2019; 
Millette et al., 2020; Newbold et al., 2015). Such studies have revealed a wide spectrum 
of biodiversity change, including both increases and decreases of species richness and 
abundances, with trends quantified over time (Blowes et al., 2019; Dornelas et al., 2014; 
Macgregor et al., 2019; Vellend et al., 2013), space (Betts et al., 2017; Newbold et al., 
2015) and taxa (Chapter 3; Outhwaite et al., 2020). The biodiversity data underlying 
many of these syntheses (e.g., time series, occurrence records and space-for-time 
surveys) have already been shown to be biased geographically and taxonomically 
(Amano et al., 2016; Boakes et al., 2010; Gonzalez et al., 2016; Meyer et al., 2015). 
Surprisingly, much less attention has been given to whether the data are also biased with 
respect to the overall variation in global change drivers (e.g., human use of ecosystems, 
climate change, pollution). Yet, knowing to what degree the sampling of biodiversity 
databases captures global change is vital for interpreting results derived from data 
syntheses and identifying future data gaps to be filled. The next stage of biodiversity 
syntheses, scenarios and conservation goals will be brought together in the Convention 

on Biological Diversity’s Post-2020 Global Biodiversity Framework. I argue that, post-
2020, biodiversity science needs to move towards improved representation of global 
change variation in biodiversity data. 
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Insights from large-scale data syntheses inform trajectories of past, current and future 
change in the Earth’s biota (Hill et al., 2018; IPBES, 2019; Schipper et al., 2019; WWF, 
2018), as well as the development of indicators for global conservation policies (OECD, 
2019; Xu et al., 2021). To upscale the findings of syntheses of local-scale data to 
estimates of global or mean biodiversity change, the underlying data should be 

representative across multiple dimensions: space, time, taxonomic variation, as well as 
variation in the drivers of biodiversity change (Johnston et al., 2020; Mentges et al., 2021; 
Mihoub et al., 2017; Troudet et al., 2017). There is already recognition of the biases 
associated with space and geography (Boakes et al., 2010; Gonzalez et al., 2016; 
Johnston et al., 2020; Mentges et al., 2021), time and historical baselines (Boakes et al., 
2010; Buckland & Johnston, 2017; Gonzalez et al., 2016; Wauchope et al., 2021) and 
taxonomy (Buckland & Johnston, 2017; Feng et al., 2021; Troudet et al., 2017). In 
contrast, sampling biases with respect to drivers of change are rarely emphasised in the 
existing literature (but see Shirey et al., (2021) for spatio-taxonomic biases in North 
American butterfly occurrence records). At smaller spatial scales, sampling biases are 
well-documented in national monitoring schemes and citizen science data (e.g., showing 
over-representation of urban areas (Marsh & Cosentino, 2019) or under-representation 
of regions undergoing rapid climate change (Shirey et al., 2021)). In contrast, at the larger 
spatial scales of data syntheses, sampling biases associated with global change drivers 
remain unknown. Such knowledge gaps compromise our ability to draw broad inferences 
from the outcomes of syntheses and to quantify the shape of the relationship between 
driver intensity, such as extent of land-use change, and biodiversity, in order to identify 
ecological tipping points (Isbell et al., 2019; Mihoub et al., 2017; Moore, 2018; Ritchie et 
al., 2021). Thus, to interpret the findings of any data synthesis, we need to consider if the 
underlying data are sampled from sites with the full range of different driver intensities, or 

rather mostly include heavily impacted sites or wilderness areas (De Palma et al., 2018; 
IPBES, 2019; Mihoub et al., 2017). Understanding the representativeness of biodiversity 
data across global change axes is essential to interpret estimates of regional or global-
scale biodiversity change from compilations of local-scale data. 
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Here, I quantify global change representation in biodiversity databases, present my 
perspective on capturing the representativeness of biodiversity data in large-scale 
syntheses and discuss implications for interpreting their findings. I focus on four aspects 
of representativeness – global change intensity over space, global change intensity over 
time, geography, and taxonomy. Particularly, I highlight the patterns in spatial and 

temporal sampling of global change drivers as under-explored types of bias. My 
perspective serves two important purposes: 1) to highlight the variation in global change 
drivers that is already captured by global datasets and hence the driver impacts that I can 
quantify in ongoing studies, and 2) to identify the gaps in data representativeness that 
future studies, monitoring and data mobilization actions should target. By building 
biodiversity databases that are more representative of multiple axes of natural and 
anthropogenic variation, we can improve predictions of the global state and trends of 
biodiversity.  
 

2.3 Methods 
 
Workflow 
I combined three of the largest, currently available, open-access biodiversity databases - 
Living Planet (WWF, 2018) - marine and terrestrial; BioTIME (Dornelas et al., 2018) - 

marine and terrestrial; and PREDICTS (Hudson et al., 2017) - terrestrial, with maps of the 
intensities of five global change drivers (Bowler et al., 2020). The drivers I focused on 
were human use (land use intensity in the terrestrial realm and fishing in the marine 
realm), climate change (changes in mean temperature and precipitation and their 
extremes), human population density, pollution and invasive species pressure. To 
measure how well each database captures variation in global change intensity over 
space, I first estimated driver variation around the world. I then determined the ‘global 
change space’ using the dominant orthogonal axes of change (similar to the concept of 
trait or niche space, Díaz et al., (2016)). I then mapped the sampling sites within each 
database onto the global change space to highlight the sampled region, as well as regions 
with under- or over- representation. To quantify the representation of global change 
intensity over time, I focused on climate change and land cover change across terrestrial 
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sites with time series data from the Living Planet and BioTIME databases. I chose those 
two drivers because they have global-scale data available at an annual (or finer) time 
step for long enough periods to coincide with when the population and biodiversity time 
series were surveyed. At each site, I compared the amount of change that occurred 
before relative to during the periods of biodiversity monitoring. To estimate geographic 

representation, I mapped site locations of the three databases and determined sampling 
intensity across an ~30° spatial grid covering the planet. Finally, to estimate taxonomic 
representation, I calculated the percentage of known species included in the three 
databases, with each species having the same weight.  
 
Databases of ecological monitoring 
I combined three of the largest biodiversity databases - Living Planet (7,340 time series 
spanning 1970-2014), BioTIME (44,532 time series spanning 1858-2017) and 
PREDICTS (468 studies spanning 1984-2013). The Living Planet database (WWF, 2018) 
includes time series data of individual species’ abundance for vertebrate taxa for the 
terrestrial, marine and freshwater realms. The BioTIME database (Dornelas et al., 2018) 
is also a compilation of time series but of ecological assemblages for vertebrate, 
invertebrate and plant taxa across the terrestrial, marine and freshwater realms. 
Freshwater realm data were excluded for the purposes of this analysis because of lack 
of global change driver data for freshwater environments. The PREDICTS database 
(Hudson et al., 2017) includes space-for-time comparison studies testing the effects of 
land-use change on vertebrates, invertebrates and plants and thus focuses on the 
terrestrial realm. For this chapter, I only used the geographical coordinates of the sites 
within each database and not the biodiversity data collected at each site. 
 

Databases of global change 
I used the 16 marine and terrestrial global change driver layers compiled by Bowler et al. 
(2020; Appendix 2.4). I selected these layers because they had been harmonised across 
both realms and hence were most suitable for my global analysis. As in Bowler et al. 
(2020), these layers were grouped into five focal drivers: 1) human use (land-use for the 
terrestrial realm, and exploitation for the marine realm), 2) climate change, 3) human 
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population density, 4) pollution and 5) invasion potential. The driver data were 
harmonised to a standard spatial grid with a resolution of 100 km2 and were aggregated 
over the time period between 1990 and 2010. The driver data were not available on an 
annual time step with the exception of the variables forest loss and climate change. Data 
limitations were particularly pronounced for the marine realm, as it is harder to monitor 

global change at sea than over land (Bowler et al. 2020). For details on the individual 
layers forming the global change data, including their resolutions and temporal coverage, 
see Appendix 1.3. I used the Land Use Harmonisation (LUH) database of reconstructed 
historical land cover at a 0.25° resolution (Hurtt et al., 2011) to extract primary forest cover 
estimates over a long historic period (from the year 800 to 2014). For the terrestrial realm, 
I obtained monthly surface air temperature at a spatial resolution of 0.5° from the CRU 
TS v4.05 database (Harris et al., 2020) and for the marine realm, I extracted sea surface 
temperature at a spatial resolution of 2° from the NOAA Extended Reconstructed SST v5 
database (Huang et al., 2017). For each of the different metrics, I used the highest 
resolution data available to improve the precision of land cover and temperature 
estimates. For both surface air temperature and sea surface temperature, I aggregated 
the monthly data into yearly averages for time periods matching the timing of biodiversity 
time series as well as the period of same duration preceding the monitoring (e.g., for a 
time series from 2000 to 2010, I extracted data from 1990 to 2000 and from 2000 to 2010). 
 
Mapping ecological monitoring in global change space 
I combined the geographical coordinates of all spatially-explicit monitoring sites in the 
Living Planet, BioTIME and PREDICTS databases. For each sampling site, I extracted 
the intensity of 16 global change layers as well as their cumulative magnitudes. The driver 
data matching the sites in each database are available in an open-access repository (see 

Code and Data Availability section). The estimates for the magnitudes of each driver were 
standardised between 0 and 1 to make them comparable. I used a Principal Component 
Analysis (PCA) to map global change space within the two dominant orthogonal axes 
(similar to trait space, Díaz et al., (2016)), which explained 81% of the variation, and 
visualised the sampled sites in this global change space. I extracted driver intensity for 
one million simulated random locations spanning the globe to represent an unbiased 
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sample of the marine and terrestrial surface of the world. I used this random sample as a 
comparison for quantifying the representation of global change variation in biodiversity 
data. To calculate the percentage overlap between global change space and the area 
within it occupied by the three databases, I used the package SIBER v.2.1.6.9 (Jackson 
et al., 2011) and 95% prediction ellipses. The overlap was calculated using ellipses based 

on the climate change and human use variables, since human population density, 
pollution and invasion pressure were positively correlated with human use. I visualised 
marine and terrestrial global change space separately because of known differences in 
the global change driver variables capturing human impact across realms and suspected 
differences in the patterns of sampling effort (Bowler et al., 2020). 
 
To statistically compare the intensity of global change drivers around the world and in 
locations with biodiversity data, I used two Bayesian general linear models (one for the 
marine and one for the terrestrial realm) with driver intensity as the response and an 
interaction term between driver type and database as the predictor (see code repository 
for more details https://github.com/gndaskalova/GlobalChangeSpace). This model tested 
what types of sites were represented by each biodiversity database but did not include 
any biodiversity data per se as that was the focus of Chapters 3-4. Database represented 
a four-level categorical variable (Random global sampling, Living Planet, BioTIME or 
PREDICTS database; in the marine model the PREDICTS database was omitted since it 
only covers the terrestrial realm). The ‘Random global sampling’ level was used as the 
reference so the coefficients for the three databases represent differences from the 
random global sampling. Driver intensity values for each driver were standardised 
between zero and one to make them comparable. Because of the large sample size, the 
driver data were not sensitive to outlier values which if present, could have biased the 

standardisation of the data. I fitted my model using the package brms v.2.15.0 (Bürkner, 
2017) and the default weakly informative priors. I considered credible intervals around 
the effect size (posterior mean) that do not overlap zero to indicate that global change on 
sites with existing biodiversity data differs from random sampling. When effect sizes are 
negative this indicates that sites with existing biodiversity data underestimate driver 
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intensity and when effect sizes are positive this indicates that sites with existing 
biodiversity data overestimate driver intensity. 
 
Quantifying mismatches between peak driver intensity and ecological monitoring 
To quantify how well biodiversity datasets captured variation in global change over time, 

I focused on changes in primary forest cover derived from the LUH database (Hurtt et al., 
2011) and in temperature, derived from the CRU TS v.4.05 database (Harris et al., 2020) 
for the terrestrial realm and from the NOAA Extended Reconstructed SST v5 database 
(Huang et al., 2017) for the marine realm. I chose these focal drivers because they explain 
large amounts of the variation in global change in the terrestrial realm (Bowler et al., 2020) 
and they have long-enough temporal data to allow us to determine the trajectory of 
change and assess its match with the timing of biodiversity data collection.  
 
I visualised primary forest cover from the year 800 to 2014 for the location of each 
terrestrial site in the Living Planet and BioTIME databases and indicated when the 
monitoring began at each site. I was unable to complete a similar analysis for the marine 
realm because there are no available temporal data for human use drivers like fishing of 
a sufficiently high temporal and spatial resolution. I extracted monthly mean temperature 
data for the same locations and summarised it as yearly averages. I then compared the 
slopes of temperature change during the biodiversity monitoring with the slopes of 
temperature change in the period preceding the monitoring (the two comparison periods 
were of equal length and always more than five years). For the comparison, I used 
general linear models predicting temperature change as a function of period, a two-level 
categorical variable with the levels of before and during monitoring. 
 

Determining geographic and ecoregion representation 
I mapped the location of sampling sites within the Living Planet, BioTIME and PREDICTS 
databases. Ecoregion polygons were retrieved for the terrestrial (Olson et al., 2001) and 
marine (Spalding et al., 2007) realms. I then counted the number of ecoregions that were 
sampled by each database (sampling indicates at least one record in a given ecoregion). 
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Determining taxonomic representation 
To quantify taxonomic representation, I extracted the numbers of known species per taxa 
(birds, bony fish, mammals, amphibians, sharks, reptiles, terrestrial plants and 
arthropods) from the 2019 edition of the Catalogue of Life (http://www.catalogueoflife.org) 
and then compared them to the numbers of distinct species recorded in the Living Planet, 

BioTIME and PREDICTS databases. I quantified taxonomic representation as 
percentages of species which have at least one record in the respective databases. 
 

2.4 Results and discussion 
2.4.1 Biodiversity data capture spatial variation in global change space at 
sea, but not on land 

Overall, I found that biodiversity data from the Living Planet, BioTIME and PREDICTS 
databases capture a surprisingly high amount of the spatial variation in global change 
intensity around the planet, especially in the marine realm (Figure 2.1). There was 
between 1 (Figure 2.1). Among the five global change drivers I tested, climate change 
and pollution in the marine realm were sampled the most representatively, suggesting 
that we can test the effects of these drivers with higher confidence and the underlying 
data could be used when creating global scenarios for the future (Figure 2.2, Appendix 
2.3). The terrestrial global change space was less well sampled and the highest overlap 

with global change was 31% for the Living Planet Database (Figure 2.1). In fact, all three 
databases predominantly sampled places with medium to high human use and lacked 
data from regions with low land-use change and pollution. Similarly, across both realms, 
but particularly strongly over land, all databases were lacking sites that have experienced 
high amounts of climate change, reflecting geographic gaps in data collection in places 
like the Arctic (Figure 2.4). Following experimental design principles, manipulative studies 
to determine treatment effects often include a range of treatment levels from low to high 
in order to have sufficient statistical power (Osenberg et al., 1994). I propose extending 
experimental design thinking to syntheses of observation studies that aim to attribute 
change to a driver by ensuring data are included from sites experiencing a range of driver 
intensities.  
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Figure 2.1. Biodiversity data capture spatial variation in global change space better 
in the marine versus terrestrial realm. Figure shows Principal Component Analysis of 
the terrestrial (panel a) and marine (panel b) magnitudes of human use, climate change, 
human population density, pollution and invasion potential across the locations of the 
Living Planet, BioTIME and PREDICTS databases as well as one million randomly 
sampled locations across the full extent of the globe (in grey). PCA axes omitted for visual 
clarity. Arrows show direction and magnitude of PCA scores for climate change and 
human population density. Human use, pollution and invasion potential were correlated 

with human population density (see Figure S11 in the supplementary information of 
Bowler et al. 2020). Thus, climate change and human population density together capture 
the two dominant axes of global change variation. For details on the global change driver 
layers, see Bowler et al. 2020. For latitudinal variation in global change space, see 
Appendix 2.2. Annotations show sample size (N) and the percentage overlap between 
the 95% prediction ellipses covered by random sampling of global change space and the 
variation in global change sampled by the different databases. 
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Figure 2.2. Higher magnitudes of global change drivers are overrepresented in 
biodiversity data. Panels a and b show distributions of the raw global change driver data 
from random sampling spanning the globe and sites from existing biodiversity databases. 
Panels c and d show effect sizes of general linear models comparing the magnitude of 
global change drivers (response variable) across the Living Planet, BioTIME and 
PREDICTS databases and a random sampling of the planet (categorical explanatory 
variable). Positive effect sizes indicate higher average magnitudes at the sampled sites 
within databases than in the random global sampling, and negative effect sizes indicate 
lower average magnitudes. Because of the large sample sizes included in the statistical 
models, the 95% credible intervals around the effect sizes were too small to be visualised 
in the figure. See Appendix 2.3 for all outputs from statistical models. 
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2.4.2 Biodiversity data often miss the temporal peaks of land cover change, 
but capture those of climate change 

I found mismatches between when global change occurred and the timing of biodiversity 
data collection, which were more frequent for land-use change than for climate change 
(Figure 2.3). While it is well-known that peak land-use conversion often predates 
ecological monitoring by centuries to millennia (e.g., Ellis et al., 2013; Hurtt et al., 2011; 
Klein Goldewijk et al., 2017), studies rarely quantify the magnitude of this mismatch or 
account for the long-term trajectory or historic baseline (but see Chapter 2; Betts et al., 
2017). For drivers such as forest loss, the peak often occurred decades to centuries 
before the start of most biodiversity monitoring, particularly in Europe (Figure 3a-b in the 
present chapter, Chapter 2). In contrast, for climate warming, a driver that is more 
pronounced in more recent decades, I found that the majority of the Living Planet and 

BioTIME time series (76% and 56% of terrestrial time series, and 64% and 59% of marine 
time series, respectively) have experienced larger magnitudes of warming during the 
period of monitoring when compared to the same length of time preceding data collection. 
Thus, biodiversity data better captured contemporary warming relative to other global 
change drivers (Figure 2.3c-f). My results suggest that weaker or stronger relationships 
between biodiversity time series and drivers such as forest loss and climate change likely 
reflect differences in the time periods when each driver was most intense.  
 
The sampled variation in global change driver intensity over time can influence the 
strength of relationships detected in attribution analyses (Chapter 4; Isbell et al., 2019; 
Mihoub et al., 2017) and can obscure assessment of biodiversity trends in ecosystems 
with tipping points (Dakos et al., 2019). Monitoring schemes that start well after the peak 
magnitude of a global change driver will likely underestimate that driver’s impact on 
biodiversity (Mihoub et al., 2017). Equally, lagged biodiversity change might mean that 
the effects of land-use drivers like forestry or agriculture persist decades after harvest or 
farming has ceased (Chapter 4; Isbell et al., 2019). These interactions between lagged 
biodiversity responses to disturbance and temporal variability of global change have 
produced heterogeneous and often non-linear biodiversity trends, as have been reported 
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for many taxa, including birds (Jarzyna & Jetz, 2018), moths (Macgregor et al., 2019) and 
wasps (Jönsson et al., 2021). Additionally, analyses of observational datasets with both 
short durations and little variation in global change intensity over time have reduced 
statistical power and thus might fail to detect the effect of global change drivers (Jennions, 
2003). The temporal mismatch of ecological monitoring and global change drivers is hard 

to alleviate because new data collection cannot fill historic data gaps. To move forward, 
ecologists should mobilise as much existing data as possible, improve data accessibility 
and develop methods to account for variation in driver intensity over time in statistical 
models. 
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Figure 2.3. The majority of primary forest was lost by the time ecological 
monitoring began whereas high magnitudes of climate warming predominantly 
occurred during the time series. Panels a and b show the temporal trajectory of primary 
forest loss across sites part of the Living Planet (N = 4640) and BioTIME (N = 2191) 
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databases. The primary forest cover estimates show proportions based on the LUH 
database (Hurtt et al., 2011) and were calculated for cells of approximately ~96 km2 
around the centre point of each site. Historic human use time series data of sufficient 
duration were not available for the marine realm. The periods for comparison in panels c-
e were the same as the duration of each time series and were always more than five 

years (for example for a time series starting in 2000 and ending in 2010, I used 1990-
2000 as the comparison period). Slope values on the axes of panels c-e show changes 
in temperature in degrees Celsius per year, derived from general linear models estimating 
temperature as a function of year. For the terrestrial realm, surface air temperature was 
obtained from the CRU TS v4.05 database (Harris et al., 2020) and for the marine realm, 
the sea surface temperature data was extracted from the NOAA Extended Reconstructed 
SST v5 database (Huang et al., 2017). Slope and credible interval annotations on panels 
c-e show the posterior mean for the average temperature change in the period during 
monitoring relative to before monitoring. See Appendix 2.3 for all outputs from statistical 
models. 

2.4.3 Geographic gaps in biodiversity data do not always result in gaps in 
global change space  

Underrepresentation in geographic space did not directly translate into gaps in global 
change space and thus an incomplete geographic sample can capture a surprising 
amount of variation in global change driver intensity (Figures 2.1-2.2, 2.4). Geographic 
gaps exist across all three databases I tested, particularly in tropical and high latitudes 
and in the deep sea. Regions including Northern Asia, Africa and South America had 
fewer sample sites than Europe and North America across all three databases. For 
example, there were twice as many European records as there were South American 
ones in the PREDICTS database, despite South America being almost twice the size of 

Europe. Europe and North America not only had more sampling across space, but repeat 
sampling was also more frequent (Figure 2.4a-e). Ecoregions in the marine realm were 
better represented than those in the terrestrial realm, with data sampled in 69% and 48% 
of marine ecoregions in the Living Planet and BioTIME databases, compared with the 
same in 16%, 30% and 32% of terrestrial ecoregions in the Living Planet, BioTIME and 
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PREDICTS databases, respectively (Figure 2.4). Geographic biases are well-known 
caveats of biodiversity data (e.g., Boakes et al., 2010; Gonzalez et al., 2016; Titley et al., 
2017) and can be particularly problematic when extrapolating from patchy local-scale 
data to broad macroecological patterns (IPBES, 2019). For example, studies of insect 
biodiversity trends from a limited sample of geographic locations have found steep 

declines (e.g. 63 sites in Germany and 73 sites in predominantly North America and 
Europe in Hallmann et al. (2017); Sánchez-Bayo & Wyckhuys (2019), respectively), 
whereas studies from larger and more geographically representative datasets have found 
no net change (van Klink et al., 2020). This nuance around the source locations of 
biodiversity data is often lost in media and public communication of population and 
biodiversity change, sometimes leading to misinterpretation of local declines as 
ubiquitous worldwide (Daskalova et al., 2021; Didham et al., 2020; Dornelas & Daskalova, 
2020; Montgomery et al., 2019). Ecologists should target future ecological monitoring that 
fills in the gaps in not just geographic but also in global change space, particularly places 
with high climate change and less disturbed ecosystems, to better capture and 
communicate biodiversity change. 
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Figure 2.4. Geographic and ecoregion gaps in biodiversity data exist in both the 
marine and terrestrial realms but they do not directly translate to gaps in global 
change variation. Maps on panels a-e show locations of sites from the Living Planet, 
BioTIME and PREDICTS databases with darker colours indicating higher numbers of 
sites. Panel f shows the intensity of cumulative global change (climate change, human 
use, human population density, pollution and invasion pressure combined) across the 
terrestrial and marine realms, based on Bowler et al., 2020. Ecoregions are based on the 
classification of Olson & Dinerstein (2002). Number annotations on panel f show the 
number of ecoregions represented by at least one record and the total number of marine 
and terrestrial ecoregions on Earth. 
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2.4.4 More and less well represented taxa may respond differently to global 
change drivers 

Taxonomic representation in biodiversity analyses could influence the detected global 
change responses, with certain taxa being more or less sensitive to global change 
(Barnagaud et al., 2012; Frishkoff et al., 2016; Isaac & Cowlishaw, 2004; Rocha‐Ortega 
et al., 2021). For example, longer-lived species may have greater lagged responses to 
global change drivers such as land-use change when compared with species with shorter 
generation times (Chapter 4). I found that birds were the best-, and arthropods the worst-
represented taxa across the Living Planet, BioTIME and PREDICTS databases (Figure 
2.5), as commonly found in ecological datasets (Dornelas et al., 2018; Hudson et al., 

2017; Rocha‐Ortega et al., 2021). Recently, invertebrates and in particular insects have 
been highlighted as a taxon experiencing potential steep declines in abundance and 
biomass (Hallmann et al., 2017; Sánchez-Bayo & Wyckhuys, 2019), yet such findings are 
confounded by the general paucity of invertebrate data (Daskalova et al., 2021; Didham 
et al., 2020; Montgomery et al., 2019; but see van Klink et al., 2021 for a recent effort in 
compiling insect data). In contrast, birds are the focus of many national and international 
monitoring schemes and for many species, research has established how populations 
are changing over time (Brlík et al., 2021).  
 
There are frequent calls for better sampling across the tree of life to capture the variety 
of ways in which species from the smallest ant to the biggest sequoias are being impacted 
by the Anthropocene (e.g.,Bardgett & van der Putten, (2014); Cameron et al., (2018, 
2019); Collen et al., (2008); Geijzendorffer et al., (2016); Pereira et al., (2013); Wetzel et 
al., (2018)). Without representative taxonomic coverage, ecologists could be failing to 
characterise the full balance between the winners and losers of a particular global change 
driver (Dornelas et al., 2019). While my findings show that the spatial variation in global 
change is broadly well-sampled by the three databases I tested (Figure 2.1), it is important 
to highlight that the majority of those biodiversity records are for mammals, birds and 
plants. Consequently, global change space remains poorly represented for less studied 



Chapter 2. Global change representation 

 72 

taxa like terrestrial invertebrates for which representation was only 3.2% for time series 
data (BioTIME) and 29.4% for space-for-time data, despite invertebrates representing 
97% of all known species (PREDICTS, see Appendix 2.1 for global change space across 
all studied taxa). Extending findings from the limited representation of the planet’s 
diversity to cross-taxa scenarios of future change should be done with caution and placed 

in the context of which species have the most records within the database (Leclère et al., 
2020; Mace et al., 2018; L. M. Pereira et al., 2020). 
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Figure 2.5. Taxonomic representation of biodiversity data is highest for birds and 
mammals and lowest for arthropods. The data available across biodiversity databases 
do not reflect the taxonomic diversity of the tree of life and millions of species are not 
represented by even a single record (b). Percentages in a show how many of the known 
species in each taxon are represented by at least one record in the Living Planet, BioTIME 
and PREDICTS databases. Panel b shows how monitored species fit within the larger 
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tree of life and is based on catalogued and predicted species in (Mora et al., 2011). The 
“Monitored” category combines the species represented in the Living Planet, BioTIME 
and PREDICTS databases and the percentages show how many of the predicted species 
feature at least once in biodiversity databases. The numbers of known species per taxa 
were extracted from the 2019 edition of the Catalogue of Life 

(http://www.catalogueoflife.org). The values for the birds and mammals in the Living 
Planet and BioTIME database include both marine and terrestrial species. Note that the 
BioTIME database additionally include records for marine invertebrates, benthos, marine 
plants, freshwater plants, freshwater invertebrates and freshwater fish.  
 

2.4.5 Recommendations for capturing the spectrum and distribution of global 
change across space, time and the tree of life 

Understanding ongoing and future biodiversity change can be improved by quantitatively 
accounting for the representation of biodiversity data across global change space, over 
the temporal trajectory of drivers, across geographic regions and across the tree of life. 
Together, my four recommendations provide guidance on using existing observational 
data, determining where to locate future ecological monitoring and designing 
experimental studies of novel global change space without modern day analogues. 
 
Recommendation 1: Test the global change representation of databases and 
syntheses 
Extending our thinking beyond just geographic, temporal and taxonomic bias to include 
global change variation can contextualise research findings from biodiversity data. The 
different relative positions of the current forms of global biodiversity databases within 
global change space might explain some of the differences in research findings. For 

example, predominantly negative impacts of intensifying land-use change have been 
found using PREDICTS (Newbold et al., 2015), both negative and positive influences of 
forest loss based on Living Planet and BioTIME (Chapter 4) and stronger impacts of 
temperature change on richness, composition and abundance trends in BioTIME (Antão 
et al., 2020). In this study, I present a way to test data representation across different 
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global change drivers over space and time that can be applied to other datasets. I 
recommend that future syntheses explicitly include tests of the representation of their data 
for the global change drivers being tested in addition to highlighting other data gaps 
(Boakes et al., 2010; Cameron et al., 2018; Collen et al., 2008; Feng, X. et al., 2021; 
Geijzendorffer et al., 2016; Rocha‐Ortega et al., 2021; Troudet et al., 2017; Wetzel et al., 

2018). 
 
Recommendation 2: Account for data representation across multiple axes in 
existing syntheses of observational data 
Beyond testing for global change representation, studies should ideally account for the 
representation of their data for the global change driver (s) of interest. A variety of 
approaches could be used, including the following: 1) Randomised subsampling can help 
balance uneven data where certain types of global change are overrepresented while 
others are underrepresented (Buckland & Johnston, 2017), however, this has the 
disadvantage of discarding potentially valuable data. 2) Statistical weightings have been 
used to adjust the representativeness of the data sample e.g., by up-weighting under-
represented regions or taxa (e.g., as employed by the Living Planet Index, McRae et al. 
(2017) and often with citizen science data (Geijzendorffer et al., 2016; Xu et al., 2021) but 
this approach can over emphasise the effect of very small portions of the overall data 
(Leung et al., 2020) and potentially inflate errors associated with those data (Buschke et 
al., 2021; Didham et al., 2020; Leung et al., 2020; Wauchope et al., 2021). 3) Bias can 
be explicitly modelled using fixed effects for continuous variables of driver intensity and 
random effects to represent geographic, temporal and taxonomic structure (e.g., as in 
Palma et al. (2018), but care must be taken to ensure all uncertainties are propagated 
through to the global mean estimate (Bennington & Thayne, 1994; Sánchez‐Tójar et al., 

2020; Tessarolo et al., 2021; Wintle et al., 2003)). 4) Baselines, time since disturbance 
and changing intensity of impact of global change drivers can be explicitly incorporated 
into analyses of time series data (Chapter 4; Isbell et al., 2019). Analyses that account 
for global change representation will provide more accurate attribution of biodiversity 
change to global change drivers. 
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Recommendation 3: Prioritise new data collection for underrepresented parts of 
the global change spectrum 
A lot of the focus in the literature is on filling geographic (Boakes et al., 2010; Gonzalez 
et al., 2016; Johnston et al., 2020; Mentges et al., 2021), temporal (Boakes et al., 2010; 
Buckland & Johnston, 2017; Gonzalez et al., 2016; Wauchope et al., 2021), and 

taxonomic (Buckland & Johnston, 2017; Feng et al., 2021; Troudet et al., 2017) 
biodiversity data gaps, but this focus should be shifted towards prioritising regions that 
undersample global change. For example, biodiversity data are currently lacking from 
places with high magnitudes of climate change including Arctic and boreal forest regions, 
as well as tropical regions that are currently entering non-analogue climate space 
(Fitzpatrick & Hargrove, 2009). These data are important not just for understanding 
current effects of climate change, but also as sentinels of future change around the world 
(Fitzpatrick & Hargrove, 2009; Mahony et al., 2018; Pfeiffer et al., 2020). Another 
underrepresented part of the global change spectrum is sites with low human impact 
(Figures 1-2), which provide a necessary comparator for testing the impacts of human 
use, pollution and other global change drivers. Such sites, however, by definition tend to 
be more difficult to access. Remote sensing monitoring of biodiversity in such places 
could achieve a balance between collecting data and minimising human impact 
(Vihervaara et al., 2017). The gaps above refer to marine and terrestrial environments, 
but for the freshwater realm, we have yet to collect enough data to be able to quantify 
global change space. Collecting large-scale information of the disturbance levels across 
rivers and lakes can reveal the freshwater global change space. We would then be able 
to test how representative the locations of freshwater biodiversity monitoring sites are of 
the wider global change spectrum. Although ecologists cannot achieve greater global 
change representation of historic and current data, the monitoring programs of the future 

can prioritise global change representation, while also filling geographic and taxonomic 
gaps. 
 
Recommendation 4: Design experiments to study novel global change space 
Global change space is not static and to make scenarios for future biodiversity trends, 
ecologists need to sample not only current variation in global change drivers, but also 
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future combinations of global change drivers (Zurell et al., 2012). I suggest that using 
projections for climate change and human impact, such as IPCC (IPCC, 2014) and HYDE 
(Klein Goldewijk et al., 2017), we can compute future global change space and determine 
novel environments without current-day analogues and where those novel environments 
will most likely occur. Designing lab and field experiments that test novel combinations 

and magnitudes of global change drivers can provide a preview of biodiversity responses 
to future environmental conditions. Prioritising biodiversity monitoring where novel 
environments will likely develop will ensure that future biodiversity syntheses and impact 
assessments will represent future as well as current global change. 
 

2.5 Conclusion 
 
Predicting future biodiversity change and its consequences for ecosystem functions and 
services to society is an urgent scientific challenge. Global biodiversity monitoring needs 
to capture a representative sample of the world over both space and time, as well as the 
full spectrum of global change drivers. In this study, I quantified four types of 
representativeness - global change intensity over space, global change intensity over 
time, geography, and taxonomy (Figures 2.1-2.5). Together, my findings demonstrate that 
global biodiversity datasets capture a large proportion of the intensity of global change, 
but not uniformly. Over space, existing data capture up to 78% of the spatial variance in 

global change drivers, but more so at sea than on land (78% versus 31%). Over time, 
monitoring often starts after the peak intensity in environmental change for drivers like 
primary forest loss (Chapters 2 and 4), but more closely coincides with the period of rapid 
climate change (Figure 2.3). I identify four recommendations to test and account for 
current and future global change representation: 1) Test the global change representation 
of databases and syntheses, 2) Account for data representation across multiple axes in 
existing syntheses of observational data, 3) Prioritise new data collection for 
underrepresented parts of the global change spectrum, and 4) Design experiments to 
study novel global change space. 
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The biodiversity synthesis literature must progress beyond merely discussing bias to 
instead quantify and account for the global change representation of biodiversity data. By 
considering all axes of the global change spectrum, ecologists can strengthen the 
empirical evidence for the next stage of IPBES global biodiversity assessments and the 
global biodiversity indicators for the Post-2020 Global Biodiversity Framework. With 

continued calls for more biodiversity data (e.g., IPBES, 2019; Jetz et al., 2019; Kissling 
et al., 2018), I especially advocate for future biodiversity monitoring to target not just 
geographic and taxonomic gaps, but to also ensure improved representation of global 
change by focusing on the under-represented areas in global change rather than 
geographic space. 
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Chapter 3. Rare and common species 
span a wide spectrum of population trends 

The following chapter “Rare and common vertebrates span a wide spectrum of 
population trends” has been published in Nature Communications: 

Daskalova, G.N., Myers-Smith, I.H. & Godlee, J.L. Rare and common vertebrates span a 
wide spectrum of population trends. Nature Communications 11, 4394 (2020). 
https://doi.org/10.1038/s41467-020-17779-0  
 
Authors: Gergana N. Daskalova1, Isla H. Myers-Smith1 and John L. Godlee1 

1 School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, Scotland 

 
Author contributions: IMS, my supervisor, and I conceived the idea. I conducted the 
statistical analyses. JLG contributed to the calculation of geographic range estimates. All 
authors contributed to the integration of the LPI, GBIF and IUCN databases, which I led. 
I created all figures with input from IMS. I wrote the first draft of the manuscript and all 
authors contributed to revisions. 
 
Code and data availability: Raw data are available from the following websites: for 
population time series (LPI, 2016) - http://www.livingplanetindex.org/data_portal, GBIF 
occurrences (GBIF, 2017) - https://www.gbif.org, bird geographic ranges (BirdLife 
International, 2018) - http://datazone.birdlife.org, mammal geographic ranges (Jones et 
al., 2009) - http://esapubs.org/archive/ecol/E090/184/, species’ habitat preferences, 

threat types and IUCN Red List Categories (IUCN, 2017) - https://www.iucnredlist.org, 
and phylogenies (Jetz et al., 2012; Jetz & Pyron, 2018; Tonini et al., 2016) - 
https://vertlife.org and https://birdtree.org. Code for all data processing and analyses and 
summary datasets are publicly available on GitHub and archived on Zenodo (DOI: 
10.5281/zenodo.3817207) (Daskalova, G.N., 2020). 
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3.1 Summary 
 
The Earth’s biota is changing over time in complex ways. A critical challenge is to test 
whether specific biomes, taxa or types of species benefit or suffer in a time of accelerating 
global change. I analysed nearly 10 000 abundance time series from over 2000 vertebrate 
species part of the Living Planet Database. I integrated abundance data with information 
on geographic range, habitat preference, taxonomic and phylogenetic relationships, and 
IUCN Red List Categories and threats. I found that 15% of populations declined, 18% 
increased, and 67% showed no net changes over time. Against a backdrop of no 
biogeographic and phylogenetic patterning in population change, I uncovered a distinct 
taxonomic signal. Amphibians were the only taxa that experienced net declines in the 
analysed data, while birds, mammals and reptiles experienced net increases. Population 
trends were poorly captured by species’ rarity and global-scale threats. Incorporation of 
the full spectrum of population change will improve conservation efforts to protect global 
biodiversity. 
 

3.2 Introduction 
 

Ecosystem-level change is currently unfolding all around the globe and modifying the 
abundances of the different species forming Earth’s biota. As global change continues to 
accelerate (Ehrlén & Morris, 2015; Hefley et al., 2016), there is a growing need to assess 
the factors explaining the variation in ecological changes observed across taxa and 
biomes (IPBES, 2018). However, existing empirical studies of the predictors of the 
abundance of individuals of different species over time (hereafter, population change) 

mostly focus on either specific taxon (Gilroy et al., 2016) or on population declines alone 
(Ceballos et al., 2017; Hefley et al., 2016). A critical research challenge is to disentangle 
the sources of heterogeneity across the full spectrum of population change for available 
population data. Recent compilations of long-term population time series, extensive 
occurrence, phylogenetic, habitat preference and IUCN Red List Category data (Jetz et 
al., 2012; Jetz & Pyron, 2018; Tonini et al., 2016) provide a unique opportunity to test 
which species- and population-level attributes explain variation in population trends and 
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fluctuations among vertebrate species monitored around the world. Such population 
change is the underlying process leading to community reassembly (Batt et al., 2017) and 
the resulting alterations to biodiversity are vitally important for ecosystem functions and 
services (Oliver et al., 2015).  

The distributions of global change drivers such as land-use change, habitat change, 

pollution, invasion by non-native species and climate change show distinct clustering 
across space (Bowler et al., 2020; Halpern et al., 2015; Hansen et al., 2013). Biodiversity 
trends derived from assemblage time series have also been shown to vary, with the 
marine realm emerging as a hotspot for rapid changes in community composition (Blowes 
et al., 2019). Since assemblages are made up of populations, the biogeographic patterns 
at the assemblage level suggest similar clustering might occur at the population level as 
well (Dornelas et al., 2019). In addition to geographic patterns in exposure to 
anthropogenic activities, species’ vulnerability and traits can moderate population 
responses to natural and anthropogenic environmental change (Isaac & Cowlishaw, 
2004), both across evolutionary time (Jetz et al., 2012; Jetz & Pyron, 2018; Tonini et al., 
2016) and in the modern day (Newbold et al., 2018; Sykes et al., 2020; Vincent et al., 
2020). Building on known variability in species’ vulnerability (Isaac & Cowlishaw, 2004; 
Khaliq et al., 2014; Morrison et al., 2018), I expected taxonomic and phylogenetic signals 

in population trends and fluctuations (e.g. greater declines, increases or fluctuations in 
abundance for specific taxa and among specific clades). Understanding which biomes, 
taxa and types of species are experiencing the most acute changes in abundance over 
time could provide key insights for conservation prioritization. 

Conservation efforts often focus on protecting rare species - those with restricted 
geographic extents, small population sizes or high habitat specificity - as they are 
assumed to be more likely to decline and ultimately go extinct (Gaston & Fuller, 2008; 
Longton & Hedderson, 2000; Pigott & Walters, 1977). Species with a smaller geographic 
range might have more concentrated exposure to environmental change, with less 
opportunities to find refugia or disperse, thus increasing the likelihood of declines (Batt et 
al., 2017; Ehrlén & Morris, 2015). As per population dynamics theory (Lande, 1993; 
Melbourne & Hastings, 2008) and Taylor’s power law (Kilpatrick & Ives, 2003), species 



Chapter 3. Rarity and population trends 

 96 

with small populations are more likely to undergo stochastic fluctuations that could lead 
to pronounced declines, local extinction and eventually global extinction (Ceballos et al., 
2017). Small populations are also more likely to decline due to inbreeding, but there are 
also instances of naturally small and stable populations (Hanski, 1998; Kareiva, 1990). 
Allee effects, the relationship between individual fitness and population density, further 

increase the likelihood of declines due to lack of potential mates and low reproductive 
output once populations reach a critically low density (Dennis et al., 2016; Sun, 2016). 
Furthermore, environmental change might have disproportionately large effects on the 
populations of species with high habitat specificity, as for these species persistence and 
colonization of new areas are limited by strict habitat preferences (Bowler et al., 2018; 
Ehrlén & Morris, 2015). The fossil record indicates that on millennial time scales, rare 
species are more likely to decline and ultimately go extinct (Harnik et al., 2012), but 
human actions have pushed Earth away from traditional geological trajectories (Steffen 
et al., 2007), and the relationships between rarity and population change across the 
planet have yet to be tested for the time from the 1970s onwards. 

On a global scale, species are exposed to a variety of threats, among which habitat 
change, resource exploitation and hunting dominate as key predictors of extinction risk 
(Maxwell et al., 2016). Species’ IUCN Red List Categories are often used in conservation 

prioritisation and more threatened species tend to be the focus of conservation initiatives 
(Martín-López et al., 2011). At more local scales, there might be variation in how 
populations are changing over time in different locations, in isolation from their overall 
conservation status (Gilroy et al., 2016; van Strien et al., 2016). Testing population 
change across species’ IUCN Red List Category allows us to link contemporary changes 
in abundance with long-term probability of extinction (Mace et al., 2008). Determining how 
local-scale population trends vary across species’ IUCN Red List Categories has practical 
applications for assessing species’ recovery which is useful for the proposed IUCN Green 
List of Species (Akçakaya et al., 2018). 
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Here, I asked how the trends and fluctuations of vertebrate populations vary with 
biogeography, taxa, phylogenetic relationships and across species’ rarity metrics and 
IUCN Red List Categories and threat types from the species' IUCN Red List profiles. I 
tested the following predictions: 1) There would be biogeographic patterns in population 
trends and fluctuations across the planet’s realms and biomes, in line with particular 

regions of the world experiencing high rates of environmental change (e.g., tropical 
forests (Barlow et al., 2007)). 2) Populations of rare species would be more likely to 
decline and fluctuate than the populations of common species. 3) Populations of species 
with a higher IUCN Red List Category and higher number of threats would be more likely 
to decline and fluctuate than the populations of least concern species and those exposed 
to a lower number of threats. I quantified differences in population trends and fluctuations 
across latitudes and biomes within the freshwater, marine and terrestrial realms to test 
the presence of distinct hotspots of declines and increases. Additionally, I used data from 
the VertLife and BirdLife Databases (Jetz et al., 2012; Jetz & Pyron, 2018; Tonini et al., 
2016) to assess taxonomic and phylogenetic signals. I measured rarity using three 
separate metrics – geographic range derived from GBIF records, mean population size 
(number of individuals that were recorded during monitoring for each population in the 
Living Planet Database) and habitat specificity derived from the species' IUCN Red List 
profiles. In a post-hoc analysis, I compiled threat types and number of threats derived 
from the species' IUCN Red List profiles to determine how threats influence local-scale 
population change. Using the largest currently available compilation of population records 
over time, I conducted a global synthesis of population trends and fluctuations to provide 
key empirical evidence for the management, conservation and prediction of ecological 
changes during the Anthropocene. 

3.3 Methods 
 
Workflow 
I focused on two aspects of population change – overall changes in abundance over time 
(population trend, μ) and abundance variability over time (population fluctuations, σ2). In 
the first stage of my analyses, I quantified trends and fluctuations for each population 
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using state-space models that account for observation error and random fluctuations 
(Humbert et al., 2009, Appendix 3.1). In the second stage, I modelled the population trend 
and fluctuation estimates from the first stage across latitude, realm, biome, taxa, rarity 
metrics, phylogenetic relatedness, species’ IUCN Red List Category and threat type using 
a Bayesian modelling framework (Appendix 3.2). I included a species random intercept 

effect to account for the possible correlation between the trends of populations from the 
same species (see Appendix 3.21 for sample sizes). As sensitivity analyses, I additionally 
used variance weighting of the population trend estimates (μ) by the 
observation/measurement error around them (τ2) and population trend estimates from 
linear model fits (slopes instead of μ) as the input variables in the second stage models, 
as well as several different fluctuations estimates. I also repeated my analyses on a 
single-country scale, using only populations within the United Kingdom, where monitoring 
efforts are particularly rigorous and extensive. All different analytical approaches yielded 
very similar results. Effect sizes plotted on graphs were standardized by dividing the effect 
size by the standard deviation of the corresponding input data. All data syntheses, 
visualization and statistical analyses were conducted using R version 3.5.1 (R Core 
Team, 2017). 
 
Population data 
To quantify vertebrate population change (trends and fluctuations), I extracted the 
abundance data for 9286 population time series from 2084 species from the publicly 
available Living Planet Database (LPI, 2016) 
(http://www.livingplanetindex.org/data_portal) that covered the period between 1970 and 
2014 (Appendix 3.1). These time series represented repeated monitoring surveys of the 
number of individuals in a given area, hereafter called “populations”. The time series 

sampled geographic locations around the world and represented a broad range of global 
change, from relatively intact to disturbed sites (Chapter 1). Nevertheless, there were still 
biases in the data (Chapter 1, see Appendix 3.19 for a discussion of the possible 
implications of data biases). Monitoring duration differed among populations, with a mean 
duration of 23.9 years and a mean sampling frequency of 23.3 time points (Appendix 3.3, 
see Appendices 3.6 and 3.7 for effects of monitoring duration on detected trends). In the 
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Living Planet database, 17.9% of populations were sampled annually or in rare cases 
multiple times per year. The time series I analysed include vertebrate species that span 
a large variation in age, generation times and other demographic-rate processes. For 
example, in Chapter 4 I found that when generation time data were available 
(approximately 50.0% or 484 out of 968 bird species, and 15.6% or 48 out of 306 mammal 

species), the mean bird generation time is 5.0 years (min = 3.4 years, max = 14.3 years) 
and the mean mammal generation time is 8.3 years (min = 0.3 years, max = 25 years). 
Thus, most vertebrate time series within the LPD captured multiple generations. 

In my analysis, I omitted populations which had less than five time points of monitoring 
data, as previous studies of similar population time series to the ones I have analysed 
have found that shorter time series might not capture biologically meaningful directional 
trends in abundance (Wauchope et al., 2019). Populations were monitored using different 
metrics of abundance (e.g., population indices vs. number of individuals). Before analysis, 
I scaled the abundance of each population to a common magnitude between zero and 
one to analyse within-population relationships to prevent conflating within-population 
relationships and between-population relationships (van de Pol & Wright, 2009). Scaling 
the abundance data allowed us to explore trends among populations relative to the 
variation experienced across each time series.  

Phylogenetic data 
I obtained phylogenies for amphibian species from https://vertlife.org4, for bird species 
from https://birdtree.org (Jetz et al., 2012), and for reptile species from https://vertlife.org 
(Tonini et al., 2016). For each of the three classes (Amphibia, Aves and Reptilia), I 
downloaded 100 trees and randomly chose 10 for analysis (30 trees in total). Species-
level phylogenies for the classes Actinopterygii and Mammalia have not yet been resolved 
with high confidence (Foley et al., 2016; Tarver et al., 2016). 
 
Rarity metrics, IUCN Red List Categories and threat types 
I defined rarity following a simplified version of the ‘seven forms of rarity’ model 
(Rabinowitz, 1981), and thus consider rarity to be the state in which species exist when 
they have a small geographic range, low population size, or narrow habitat specificity. I 
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combined publicly available data from three sources: 1) population records for vertebrate 
species from the Living Planet Database to calculate mean population size, 2) occurrence 
data from the Global Biodiversity Information Facility (GBIF, 2017) (https://www.gbif.org) 
and range data from BirdLife (BirdLife International, 2018) (http://datazone.birdlife.org) to 
estimate geographic range size, and 3) habitat specificity and Red List Category data for 

each species from the International Union for Conservation (IUCN, 2017) 
(https://www.iucnredlist.org). The populations in the Living Planet Database (LPI, 2016) 
do not include species that have gone extinct on a global scale. I extracted the number 
and types of threats that each species is exposed to globally from their respective species' 
IUCN Red List profiles (IUCN, 2017). 

Quantifying population trends and fluctuations over time 

In the first stage of my analysis, I used state-space models that model abundance (scaled 

to a common magnitude between zero and one) over time to calculate the amount of 
overall abundance change experienced by each population (μ, Humbert et al., 2009). 
State-space models account for process noise (σ2) and observation error (τ2) and thus 
deliver robust estimates of population change when working with large datasets where 
records were collected using different approaches, such as the Living Planet Database 
(Knape et al., 2011; Leung et al., 2017; Pedersen et al., 2011). Previous studies have 
found that not accounting for process noise and measurement error could lead to over-
estimation of population declines (Rueda-Cediel et al., 2018), but in my analyses, I found 
that population trends derived from state-space models were similar to those derived from 
linear models. Positive μ values indicate population increase and negative μ values 
indicate population decline. State-space models partition the variance in abundance 
estimates into estimated process noise (σ2) and observation or measurement error (τ2) 
and population trends (μ):  

!" = !" − 1 + 	( + 	)", (1) 

where Xt and Xt-1 are the scaled (observed) abundance estimates (between 0 and 1) in 
the present and past year, with process noise represented by εt ~ gaussian (0, σ2). I 
included measurement error following: 

*" = !" + +", (2) 
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where Yt is the estimate of the true (unobserved) population abundance with 
measurement error: 

Ft ~ gaussian (0, τ2). (3) 
I substituted the estimate of population abundance (Yt) into equation 1: 

*" = !" − 1 + 	( + 	)" + +", (4) 

Given !" − 1 = *" − 1 − +" − 1 (5), then: 
*"	 = *" − 1	 + ( + )"	 + +"	 − +" − 1.	(6) 

For comparisons of different approaches to modelling population change, see Appendix 
3.20 Sensitivity analyses. 

Quantifying rarity metrics 
I tested how population change varied across rarity metrics – geographic range, mean 
population size and habitat specificity – on two different but complementary scales. I 
quantified rarity metrics for species monitored globally and in the UK. In the main text, I 
presented the results of my global scale analyses, whereas in the appendices, I included 
the results when using only populations from the UK, a country with high monitoring 
intensity. 
 
Quantifying geographic range 
To estimate geographic range for bird species monitored globally, I extracted the area of 
occurrence in km2 for all bird species in the Living Planet Database that had records in 
the BirdLife Data Zone (BirdLife International, 2018). For mammal species’ geographic 
range, I used the PanTHERIA database (Jones et al., 2009) 
(http://esapubs.org/archive/ecol/E090/184/). To estimate geographic range for bony fish, 
birds, amphibians, mammals and reptiles monitored in the UK (see Appendix 3.25 for 
species list), I calculated a km2 occurrence area based on species occurrence data from 

GBIF (GBIF, 2017). Extracting and filtering GBIF data and calculating range was 
computationally intensive and occurrence data availability was lower for certain species. 
Thus, I did not estimate geographic range from GBIF data for all species part of the Living 
Planet Database. Instead, I focused on analysing range effects for birds and mammals 
globally, as they are a very well-studied taxon and for species monitored in the UK, a 
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country with intensive and detailed biodiversity monitoring of vertebrate species. I did not 
use IUCN range maps, as they were not available for all of my study species, and previous 
studies using GBIF occurrences to estimate range have found a positive correlation 
between GBIF-derived and IUCN-derived geographic ranges (Phillips et al., 2017).  

For the geographic ranges of species monitored in the UK, I calculated range extent using 

a minimal convex hull approach based on GBIF (GBIF, 2017) occurrence data. I filtered 
the GBIF data to remove invalid records and outliers using the CoordinateCleaner 
package (Zizka et al., 2019). I excluded records with no decimal places in the decimal 
latitude or longitude values, with exactly the sample values for both latitude and longitude, 
and those within a one-degree radius of the GBIF headquarters in Copenhagen, within 
0.0001 degrees of various biodiversity institutions and within 0.1 degrees of capital cities. 
This filtering helps exclude instances of the location of museum specimens falsely being 
noted as the museum itself versus the place from where the specimen was collected. For 
each species, I excluded the lower 0.02 and upper 0.98 quantile intervals of the latitude 
and longitude records to account for outlier points that are records from zoos or other 
non-wild populations. I drew a convex hull to most parsimoniously encompass all 
remaining occurrence records using the chull function, and I calculated the area of the 
resulting polygon using areaPolygon from the geosphere package . 

Quantifying mean population size 
I calculated mean size of the monitored population, referred to as population size, 
across the monitoring duration using the raw abundance data, and I excluded 
populations which were not monitored using population counts (e.g., I excluded 
indexes).  
 
Quantifying habitat specificity 
To create an index of habitat specificity, I extracted the number of distinct habitats a 
species occupies based on the IUCN habitat category for each species’ profile, accessed 
through the package rredlist (Chamberlain, 2017). I also quantified habitat specificity by 
surveying the number of breeding and non-breeding habitats for each species from its 
online IUCN species profile (the ‘habitat and ecology’ section). The two approaches 
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yielded similar results (Appendix 3.10, Appendix 3.23, key for the profiling method is 
presented in Appendix 3.26). I obtained global IUCN Red List Categories and threat types 
for all study species through the IUCN Red List profiles (IUCN, 2017). 
 
Testing the sources of variation in population trends and fluctuations 
In the second stage of my analyses, I modelled the trend and fluctuation estimates from 
the first stage across latitude, realm, biome, taxa, rarity metrics, phylogenetic relatedness, 
species’ IUCN Red List Category and threat type using a Bayesian modelling framework 
through the package MCMCglmm (Hadfield, 2010). I included a species random intercept 
effect in the Bayesian models to account for the possible correlation between the trends 
of populations from the same species (see Appendix 1.21 for sample sizes). The models 
ran for 120 000 iterations with a thinning factor of ten, a burn-in period of 20 000 iterations 
and the default one chain. I assessed model convergence by visually examining trace 
plots. I used weakly informative priors for all coefficients (an inverse Wishart prior for the 
variances and a normal prior for the fixed effects): 

Pr (μ) ∼ N (0, 108) (7) 

Pr (σ2) ∼ Inverse Wishart (V = 0, nu = 0) (8) 

Testing population trends and fluctuations across latitude, biomes, realms and 
taxa  
To investigate the geographic and taxonomic patterns of population trends and 
fluctuations, I modelled population trends (μ) and population fluctuations (σ2), derived 
from the first stage of my analyses (state-space models), as a function of 1) latitude, 2) 
realm (freshwater, marine, terrestrial), 3) biome (as defined by the ‘biome’ category in the 
Living Planet Database, e.g., ‘temperate broadleaf forest’ (Olson & Dinerstein, 2002) and 
4) taxa (Actinopterygii, bony fish; Elasmobranchii, sharks and rays; Amphibia, 

amphibians; Aves, birds; Mammalia, mammals; Reptilia, reptiles). I used separate models 
for each variable, resulting in four models testing the sources of variation in trends and 
four additional models focusing on fluctuations. Each categorical model from this second 
stage of my analyses was fitted with a zero intercept to determine if net population trends 
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differed from zero for each of the categories under investigation. The model structures for 
all models with a categorical fixed effect were identical except for the identity of the fixed 
effect, and below I describe the taxa model: 

(/, 0, 1 = 20 + 200 + 	21 ∗ "565/, 0, 1,	(9) 

7/, 0, 1	 ∼ 	859::/5;((/, 0, 1, σ2),	(10) 

where taxai,j,k is the taxa of the ith time series from the jth species; β0 and β1 are the global 
intercept (in categorical models, β0 = 1) and the slope estimate for the categorical taxa 
effect (fixed effect), β0j is the species-level departure from β0 (species-level random 
effect); yi,j,k is the estimate for change in population abundance for the ith population time 
series from the jth species from the kth taxa. 
 
Testing population trends and fluctuations across amphibian, bird and reptile 
phylogenies 
To determine if there was a phylogenetic signal in the patterning of population change 
within amphibian, bird and reptile taxa, I modelled population trends (μ) and fluctuations 
(σ2) across phylogenetic and species-level taxonomic relatedness. I conducted one 
model per taxa per population change variable – trends or fluctuations using Bayesian 
linear mixed effects models using the package MCMCglmm (Hadfield, 2010). I included 
phylogeny and taxa as random effects. The models did not include fixed effects. I 
assessed the magnitude of the random effects (phylogeny and species) by inspecting 
their posterior distributions, with a distribution pushed up against zero indicating lack of 
effect, since these distributions are always bounded by zero and have only positive 
values. I used parameter-expanded priors, with a variance-covariance structure that 
allows the slopes of population trend (the μ values from the first stage analysis using 
state-space models) to covary for each random effect. The prior and model structures 

were as follows: 

Pr (μ) ∼ N (0, 108), (11), 

Pr (σ2) ∼ Inverse Wishart (V = 1, nu = 1), (12), 

(/, 1,@ = 20 + 201 + 	20@,	, (13) 



Chapter 3. Rarity and population trends 

 105 

7/, 1,@	 ∼ 	859::/5;((/, 1,@, σ2), (14) 
where β0 is the global intercept (β0 = 1), β0l is the phylogeny-level departure from β0 
(phylogeny random effect); yi,k,m is the estimate for change in population abundance for 
the ith population time series for the kth species with the mth phylogenetic distance. 
 

To account for phylogenetic uncertainty, for each class, I ran ten models with identical 
structures but based on different randomly selected phylogenetic trees. I reported the 
mean estimates and their range for each class.  
 
Testing population trends and fluctuations across rarity metrics  
To test the influence of rarity metrics (geographic range, mean population size and habitat 
specificity) on variation in population trends and fluctuations, I modelled population trends 
(μ) and fluctuations (σ2) across all rarity metrics. I conducted one Bayesian linear models 
per rarity metric per model per scale (for both global and UK analyses) per population 
change variable – trends or fluctuations. The response variable was population trend (μ 
values from state-space models) or population fluctuation (σ2 values from state-space 
models), and the fixed effects were geographic range (log transformed), mean population 
size (log transformed) and habitat specificity (number of distinct habitats occupied). The 
model structures were identical across the different rarity metrics and below I outline the 
equations for population trends and geographic range: 

(/, 1, ; = 20 + 201 + 21 ∗ 8AB8C5Dℎ/F	C5;8A/, 1, ;,	(15)	

7/, 1, ;	 ∼ 	859::/5;((/, 1, ;, σ2), (16) 
where geographic rangei,k,n is the logged geographic range of the kth species in the ith 
time series; β0 and β1 are the global intercept and slope estimate for the geographic range 
effect (fixed effect), β0j is the species-level departure from β0 (species-level random 

effect); yi,k,n is the estimate for change in population abundance for the ith population time 
series from the jth species with the nth geographic range. 

Testing population trends across species’ IUCN Red List Categories  
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To investigate the relationship between population change and species’ Red List 
Categories, I modelled population trends (μ) and fluctuations (σ2) as a function of Red 
List Category (categorical variable). I conducted one Bayesian linear model per 
population change metric per scale (for both global and UK analyses). To test variation 
in population trends and fluctuations across the types and number of threats to which 

species are exposed, I conducted a post-hoc (i.e., conducted after the results of the initial 
hypothesis testing was done) analysis of trends and fluctuations across threat type 
(categorical effect) and number of threats that each species is exposed to across its range 
(in separate models). The model structures were identical to those presented above, 
except for the fixed effect which was a categorical IUCN Red List Category variable.  

3.4 Results  
 

3.4.1 Vertebrate population change spanned declines, increases and no 
net change over time 
I found a broad spectrum of population trends across vertebrate populations within the 
Living Planet Database. Across the time series I analysed, 15% (1381 time series) of 
populations were declining, 18% (1656 time series) were increasing, and 67% (6249 time 
series) showed no net changes in abundance over time, in contrast to a null distribution 
derived from randomised data (Appendix 3.5b). Trends were considered statistically 
different from no net change when the confidence intervals around the population trend 
estimates did not overlap zero. My results were similar when I weighted population trends 
by the state-space model derived observation error (Figures 3.1-3.4 and Appendices 3.2-
3.3). 
 

3.4.2 There were weak biogeographic patterns of population change 
I found that globally, population increases, declines and fluctuations over time occurred 
across all latitudes and biomes within the freshwater, marine and terrestrial realms, with 
no strong biogeographic patterning and no specific hotspots of population declines 
(Figure 3.1, Appendix 3.22). Across realms, monitored vertebrate populations 
experienced net population increases (freshwater slope = 0.005, CI = 0.002 to 0.01; 
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marine slope = 0.004, CI = 0.002 to 0.01; terrestrial slope = 0.003, CI = 0.001 to 0.005, 
Figure 3.1d-e). In the freshwater and terrestrial realms, there was a bimodal distribution 
of population trends, driven largely by terrestrial bird species showing small increases 
and decreases over time (Hartigans’ dip test, D = 0.04, p < 0.01). Across biomes, 
populations in Mediterranean forests, montane grasslands, polar freshwaters, temperate 

wetlands, tropical forests and tropical coral biomes were more likely to increase, whereas 
populations from the remaining studied biomes experienced no net changes (Figure 3.1h, 
Appendix 3.22). Population fluctuations were less pronounced in the terrestrial realm 
(slope = 0.02, CI = 0.018 to 0.021, Figure 3.1f-g), but those populations were also 
monitored for the longest duration across systems (average duration – 28 years for 
terrestrial, 18 years for marine and 21 years for freshwater populations, Appendices 2.3, 
2.6 and 2.22). 
 

3.4.3 Amphibians declined on average but there were no phylogenetic 
patterns across any of the studied taxa 
I found taxonomic, but not phylogenetic patterns, in population trends and fluctuations 
over time among nearly 10 000 populations from over 2000 vertebrate species, with 
amphibians emerging as the taxa experiencing pronounced declines (Figure 3.2, 
Appendix 3.21). Amphibians experienced net declines over time (slope = -0.01, CI = -
0.02 to -0.005), whereas birds, mammals and reptiles experienced net increases (slope 

= 0.004, CI = 0.003 to 0.01; slope = 0.01, CI = 0.01 to 0.01; slope = 0.02, CI = 0.01 to 
0.02), with birds having a bimodal trend distribution indicating greater numbers of 
increasing and decreasing trends (Hartigans’ dip test, D = 0.04, p < 0.01, Figure 3.1a, 
see Appendices 3.5, 3.6 and 3.12). Bony fish population trends were centred on zero 
(slope = -0.001, CI = -0.004 to 0.002, Figure 3.1a-b) and sharks and rays showed net 
declines, but the credible intervals overlapped zero (slope = -0.01, CI = -0.02 to 0.01). 
Fluctuations were most common for amphibian populations (slope = 0.04, CI = 0.036 to 
0.049, Figure 3.2d), which were monitored for the shortest time period on average (11 
years, Appendix 3.3, Appendix 3.21). I did not detect finer scale species-level 
phylogenetic clustering of population change (both trends and fluctuations) within 
amphibian, bird and reptile classes (Figure 3.2, Appendices 3.15 and 3.24). Similarly, 
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species identity within amphibian, bird and reptile classes did not explain variation in 
population trends or fluctuations (Figure 3.2, Appendices 3.15 and 3.24). There were no 
distinct clusters of specific clades that were more likely undergo increases, decreases or 
fluctuations in population abundance (Figure 3.2). 
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Figure 3.1. Population declines, increases and fluctuations over time occurred 
across all latitudes and biomes within the freshwater, marine and terrestrial realms. 
Results include 9286 populations from 2084 species. The lack of strong biogeographic 
differences in vertebrate population trends among realms and biomes was also apparent 
on a UK scale (Appendix 3.23 and Appendix 3.23). The numbers in the legend for plots 

d-g and on the x axis in plot c show the sample sizes for realms and biomes, respectively. 
The μ values of population trend (plots a-b, d-e, h) and the σ2 values of population 
fluctuation (plots c, f-g) are from state-space models of changes in abundance over time 
for each population. Plots d and f show the distribution of population trends across realms 
including raw values (points) and boxplots (including the mean, first and third quartiles 
and boxplot whiskers that cover 1.5 times the interquartile range). Plots e, g and h show 
the effect sizes (centre of error bars) and the 95% credible intervals of population trends 
(e, h) across realms and biomes, and fluctuations across realms (g). For variation in 
fluctuations across biomes, see Appendix 3.8. The three estimates in plots e and h refer 
to different analytical approaches: population trends calculated using linear models 
(circles), state-space models (μ, triangles), and population trends (μ) weighted by τ2, the 
observation error estimate from the state-space models (squares). The five estimates in 
plot g refer to different analytical approaches, where the response variables in the models 
were: 1) the standard error around the slope estimates of the linear models of abundance 
versus year (circles), 2) half of the 95% confidence interval around the μ value of 
population change (triangles), 3) half of the 95% confidence interval around μ weighted 
by τ2, (full squares), 4) the process noise (σ2) from the state-space models, and 5) the 
standard deviation of the raw data for each population time series (empty squares). The 
process noise is the total variance around the population trend minus the variance 
attributed to observation error. See Appendix 3.21 for model outputs. Icon credits: tree by 

FayraLovers, wave by Setyo Ari Wibowo, mountain and stream by Nikita Kozin. 

2.4.4 Both rare and common species experience the full spectrum of 
population change 
Species-level metrics, such as rarity and global IUCN Red List Category, did not explain 
the heterogeneity in trends of monitored populations in the Living Planet Database. Both 



Chapter 3. Rarity and population trends 

 110 

rare and common species experienced declines, increases and fluctuations in population 
abundance over time (Figures 3.3 and 3.4). Across these time series, species with smaller 
ranges, smaller population sizes, or narrower habitat specificity (i.e., rare species) were 
not more prone to population declines than common species (Figure 3.3, Appendix 3.21). 
Populations that experienced more fluctuations had smaller mean population sizes on 

average (slope = -0.001, CI = -0.001 to -0.001, Figure 3.3f). I found increasing, decreasing 
and stable populations across all IUCN Red List Categories (Figure 3.4a). For example, 
a population of the Least concern species red deer (Cervus elaphus) in Canada declined 
by 68% over seven years going from 606 to 194 individuals and a population of the 
critically endangered Hawksbill sea turtle (Eretmochelys imbricate) from Barbados 
increased by 269% over seven years going from 89 to 328 individuals. I found more 
fluctuations (Least concern: slope = 0.022, CI = 0.021 to 0.023; Critically endangered: 
slope = 0.035, CI = 0.028 to 0.041), but not more population declines, with increasing 
IUCN Red List Category (Figure 3.4, Appendix 3.21). Populations from species with a 
higher number of threats from the species' IUCN Red List profiles did not experience 
greater declines when compared to those categorized with a smaller number of threats 
(Figure 3.4f). There were no distinct signatures of threats from the species' IUCN Red 
List profiles that were associated with predominantly declining local trends of monitored 
populations (Figure 3.4e) and there were increasing, decreasing and stable trends across 
all threat types. 
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Figure 3.2. Population trends and fluctuations varied more among, rather than 
within, taxa, with amphibians being the only group showing pronounced declines 
over time. There were no distinct phylogenetic patterns in population trends and 
fluctuations (plots e-j). For details on phylogenetic models, see methods. Grey colour in 
the heatmap in plot h shows species for which no population trend data were available. 
The numbers in the legend for plots a-d show sample size for each taxon. The μ values 
of population trend (plots a-b, e-g) and the σ2 values of population fluctuation (plots c-d, 
h-j) were derived from state-space model fits of changes in abundance over the 
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monitoring duration for each population. Plots a and c show the density distribution of 
population trends across taxa, the raw values (points) and boxplots (including the mean, 
first and third quartiles and boxplot whiskers that cover 1.5 times the interquartile range). 
Plots b and d show the standardised effect sizes (centre of error bars) and the 95% 
credible intervals of population trends (b) and fluctuations (d) across the five studied taxa. 

See Figure 3.1 caption for further details on effect sizes and Appendices 3.21 and 3.24 
for model outputs. Icon credits: bird by Hernan D. Schlosman, snake and frog by 
parkjisun, fish by Julia Söderberg. 

 
Figure 3.3. Rarity metrics did not explain heterogeneity in local population trends, 
and both rare and common species experienced declines and increases over time, 
whereas smaller populations fluctuated more over time. Numbers on plots show 
sample size for each metric. Rarity metrics were calculated for all species for which 
information was available and cover all taxa represented in the Living Planet Database, 
except for geographic range, which refers to the global range of only bird and mammal 
species in the global Living Planet Database (plots a-e). The μ values of population trend 
(plots a-d) and the σ2 values of population fluctuation (plots e-h) were derived from state-
space model fits of changes in abundance over the monitoring duration for each 
population. Plots d and h show the standardized effect sizes (centre of error bars) and 
the 95% credible intervals of three rarity metrics on population trends (d) and fluctuations 
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(h). Lines on a-c and e-g show model fits and 95% credible intervals. See Figure 3.1 
caption for further details on effect sizes and Appendix 3.22 for model outputs. 
 

 
Figure 3.4. On local scales, there were increasing, decreasing and stable 
populations across the full spectrum of the globally determined species’ IUCN Red 
List Category and anthropogenic threat type from the species' IUCN Red List 
profiles. Numbers in the legend for plots a-d and in plots e-f show sample size for each 
metric. Plots a and c show the density distribution of population trends across Red List 

status, the raw values (points) and boxplots with the mean, first and third quartiles and 
boxplot whiskers that indicate the distance that covers 1.5 times the interquartile range. 
Plots b and d show the standardized effect sizes (centre of error bars) and the 95% 
credible intervals of population trends (b) and fluctuations (d) across Red List status 
categories. The μ values of population trend (plots a, e-f) and the σ2 values of population 
fluctuation (plot c) were derived from state-space model fits of changes in abundance 
over the monitoring duration for each population. For the relationships between type and 
number of threats and population fluctuations, see Appendix 3.18. Plot e shows the 
distributions of population trends across different threats that the species face globally, 
with the central tendencies of all distributions overlapping with zero. Lines in plot f show 
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model fit and 95% credible intervals, where “number of threats” refers to the number of 
different threats that each species, whose populations are locally monitored, are exposed 
to on a global scale. See Figure 3.1 caption for further details on effect sizes, Methods 
for details on deriving the number and types of threats and Appendix 3.21 for model 
outputs. 

 

3.5 Discussion 
 
Taken together, my analysis of nearly 10 000 vertebrate population time series using a 
state-space modelling approach demonstrated ubiquitous alterations in vertebrate 

abundance over time across all biomes on Earth. I revealed that population change 
includes both increasing and decreasing populations and spans a wide spectrum of 
magnitudes, and while anthropogenic impacts have accelerated in recent decades, my 
results highlight that vertebrate species span a wide spectrum of population change 
across variation in the number and types of threats to which species might be exposed. 
Against a backdrop of no biogeographic patterning of population trends and fluctuations 
(Figure 3.1), I uncovered distinct taxonomic signals, with amphibians representing the 
only taxa that exhibited pronounced net declines, while birds, mammals and reptiles on 
average became more abundant over time (Figure 3.2). Within amphibian, bird and 
reptile taxa, there was no distinct phylogenetic clustering of closely related species 
experiencing similar population trends or fluctuations (Figure 3.2). I found that both rare 
and common species experienced the full spectrum of population change, from declines 
to no net changes and increases. Species’ geographic range, mean population size and 
habitat specificity did not explain variation in population trends, but species with smaller 
population sizes were nevertheless more likely to fluctuate, potentially increasing their 
extinction risk (Figure 3.3. There was no consistent pattern of greater population 
declines with increasing IUCN Red List Category (Figure 3.4). On a global scale, the 
vertebrate species in the Living Planet Database are exposed to a variety of threats 
according to the species' IUCN Red List profiles, but on more local scales, none of the 

threats were characterized by predominantly declining populations (Figure 3.4), 



Chapter 3. Rarity and population trends 

 115 

testifying to the diverse ways in which populations are likely responding to threats 
during the Anthropocene. 
 
Contrary to my initial predictions, I did not find a distinct geographic patterning of 
population change around the world, nor a consistent trend of increasing declines in 

population abundance with increasing IUCN Red List Category (Figures 1 and 4). 
Similar lack of biogeographic signal has been documented in regional studies of 
population change from the Netherlands (van Strien et al., 2016) and in temperate North 
America and Europe (Leung et al., 2017). Coarsely represented biogeographic regions 
and global-scale species’ IUCN Red List Categories and threat types might not capture 
the drivers acting in the locations of the specific populations I studied (Brook et al., 
2006; Fritz et al., 2009; Maxwell et al., 2016; Pereira et al., 2012). Furthermore, the 
same driver can have opposing effects on population abundance at different sites 
(Chapter 4). A lack of biome-specific directional trends in population change, despite a 
spatial clustering of human pressure around the world (Bowler et al., 2020), can also 
arise due to differences in species traits and vulnerability to environmental change 
within biomes (Isaac & Cowlishaw, 2004; Khaliq et al., 2014; Morrison et al., 2018). 
Accounting for divergent responses of species to global change is key when translating 
global policy, such as the upcoming post-2020 planetary biodiversity strategy (CBD, 
2010), into conservation actions implemented on scales much finer than biogeographic 
realms (Hill et al., 2016; Stevenson et al., 2021).  

My results highlight variation in population change among taxa, with amphibians 

emerging as the taxa experiencing the most pronounced declines in the Living Planet 
Database. The remaining taxa showed either stable or increasing net changes in 
abundance over time (Figure 3.2). Such taxonomic patterns could be driven by different 
taxon-specific factors including reproductive strategy, trophic level, generation time and 
life history traits (Cardillo et al., 2004; Purvis et al., 2000). For amphibians, population 
declines have been linked to the spread of a fungal disease (chytrid fungus, 
Batrachochytrium dendrobatidis), facilitated by global warming (Pounds et al., 2006), as 
well as habitat loss and Allee effects in small populations (Green, 2003). Within bird, 
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amphibian and reptile taxa, phylogenetic relatedness and species-level taxonomic 
classification did not explain variation in population trends and fluctuations. A similar lack 
of phylogenetic dependencies has been detected for the population growth rates of 
migratory birds (Moller et al., 2008). While phylogenetic clustering might be lacking in 
contemporary trends, there is evidence that phylogenetic relatedness predicts extinction, 

a process occurring over much longer time scales (Jetz & Pyron, 2018; Tonini et al., 
2016). Over shorter time periods, species’ traits and ability to persist, reproduce and 
disperse in ever changing landscapes might be influencing local abundance (Isaac & 
Cowlishaw, 2004), which has created a mix of winners and losers across all taxa 
(Dornelas et al., 2019). I demonstrated ongoing alterations in the abundances of six 
vertebrate taxa which over time, may lead to shifts in community composition and 
ultimately alter ecosystem function as some species become locally extinct whilst others 
become more abundant (Batt et al., 2017; Oliver et al., 2015). 

Surprisingly, my results indicated that despite decades of conservation focus on rare 
species (Gaston & Fuller, 2008; Longton & Hedderson, 2000; Pigott & Walters, 1977), 
both rare and common species in the Living Planet Database experienced declines and 
increases in population abundance over the period of monitoring. The lack of rarity effects 
on population trends can be explained by theory and empirical evidence demonstrating 

that small populations do not necessarily have a higher likelihood of experiencing declines 
and some species are able to persist in small, but stable populations (Caughley, 1994). 
The power of rarity metrics to predict population trends could also be mediated by whether 
species are naturally rare or have become rare due to external drivers in recent years 
(Harrison et al., 2008; Robbirt et al., 2006). Naturally rare species might be more likely to 
persist over time, whereas species that have more recently become rare might be more 
likely to decline in response to environmental disturbance (Newbold et al., 2018). 
Furthermore, the timing and magnitude of past and current disturbance events influence 
population trends (Chapter 4, Mihoub et al., 2017) and there could be temporal lags in 
both positive and negative abundance changes over time (Chapter 4; Vellend et al., 
2006). However, disentangling the processes leading to rarity over time remains 
challenging, and across the 2084 species I studied, there are likely cases of both natural 
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and human-driven vertebrate population change. I found that species with small 
populations were, nevertheless, more likely to fluctuate (Figure 3.3f), which may increase 
their probability of extinction, a process that could play out over longer time-scales than 
found for most population monitoring time series to date (Fagan & Holmes, 2006; Lande, 
1993; Melbourne & Hastings, 2008). My results highlight that rarity metrics alone do not 

capture the heterogeneity in local population change over time, and common species 
should not be overlooked in conservation prioritization decisions as they could be as likely 
to decrease in abundance over time as rare species. 

My finding that declines are not universal, or even predominant, for vertebrate populations 
monitored for longer than five years in the Living Planet Database contrasts with reports 
of an overall decline in the Living Planet Index (WWF, 2018b), a weighted summary of 
population change across all abundance time series in the Living Planet Database. 
Consistent with my results, the Living Planet Reports (McRae et al., 2012, 2016; WWF, 
2018b) also document that the numbers of declining and increasing species are similar 
across this database, but the Living Planet Reports document a larger magnitude of 
population declines relative to increases. The calculation of the Living Planet Index 
involves differential weighting of population trends derived using logged abundance data, 
geometric means and generalized additive models, which could explain the discrepancies 

between my study findings and those of the Living Planet Reports (WWF, 2018a). The 
Living Planet Index is hierarchically averaged from populations to species, taxa and realm 
and is also weighted by the estimated and relative number of species within biomes, 
which influences the direction and magnitude of the Living Planet Index (McRae et al., 
2017; WWF, 2018a). In contrast, my analysis explores the heterogeneity in local trends 
and fluctuations of monitored species from the raw population abundance data, and thus, 
I did not use an index with weightings, and I did not aggregate population trends to a 
species-level. Rather than summarising trends with an index, my goal was to explain 
variability in abundance over time across better monitored vertebrates around the world. 
I detected net population declines at local scales over time only in the amphibian taxa, in 
contrast with the overall negative trend of the aggregate weightings of the Living Planet 
Index (WWF, 2018b). I caution that distilling the heterogeneity of local population change 
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at sites around the world into a simple metric might hide diverging trends at local scales, 
such as the increases and declines I found.  

The magnitude of population trends could be influenced by how long populations are 
monitored (Wauchope et al., 2019), random population fluctuations (Buschke et al., 
2021), as well as whether monitoring began during a population peak or a population 
trough (Daskalova et al., 2021; Fournier et al., 2019). While overall, I did not find a strong 
effect of duration on the detected population trends in the Living Planet Database 
(Appendices 3.6, 3.7 and 3.21), my findings demonstrated that for reptiles, time series 
with longer durations are more likely to capture declines (Appendix 3.21). I also found a 
bimodal pattern of weak population increases and decreases in time series with longer 
durations particularly for terrestrial bird species with the monitoring unit being an index 
(Appendix 3.12). Seven key challenges have been identified when drawing robust 
inference about population trends over time: establishment of the historical baseline, 
representativeness of site selection, robustness of time series trend estimation, mitigation 
of detection bias effects, and ability to account for potential artefacts of density 
dependence, phenological shifts and scale‐dependence in extrapolation from sample 
abundance to population‐level inference (Didham et al., 2020). New methods to 
rigorously account for different sources of uncertainty in time series and filling in data 

gaps will allow the analyses of available population data to better inform global estimates 
of net trends across taxa (Hochkirch et al., 2021; Rowland et al., 2021). 

The strength of documented relationships between population dynamics and global 
change could be influenced by how well-monitored populations capture the full range of 
variation in driver intensity. To attribute population trends and fluctuations to site-specific 
anthropogenic drivers, we need to go beyond previous studies that have focused 
exclusively on declines and extinctions (Ceballos et al., 2017; Davidson et al., 2017). We 
require attribution analyses that statistically test the links between observed changes in 
ecosystems and the experienced extrinsic pressure (IPBES, 2018). Through attribution 
studies that encompass the full spectrum of population change, including positive, 
negative and stable trends (Chapter 4; Spooner et al., 2018), we can better understand 
the variety of ways in which climate change, land-use change and other drivers are 
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altering global biodiversity. For a subset of the bird populations in the Living Planet 
Database, greater warming of temperatures corresponded with a higher likelihood of 
population declines over time (Spooner et al., 2018), which could be caused by worldwide 
and cross-biome phenological mismatches between breeding and resource availability 
(Keogan et al., 2018). Across terrestrial species represented in the Living Planet 

Database, peak forest loss was associated with accelerations in both population 
increases and decreases in the period following habitat alteration (Chapter 4). There is 
evidence from the marine realm that when species are simultaneously exposed to 
multiple drivers, the resulting biodiversity effects are antagonistic and could produce 
patterns of no net biodiversity changes (Dunic et al., 2017). The next critical step is to test 
how multiple global change drivers together (Bowler et al., 2020) influence populations 
across both terrestrial and marine realms and determine how these relationships are 
mediated by species’ traits and vulnerability to extrinsic threats (Vinebrooke et al., 2004).  

3.6 Conclusion 

In summary, my global analysis reveals the ubiquitous nature of population change over 
time across monitored vertebrate species. I show that in a time of accelerating global 
change, there were as many increases as there are decreases in population abundance 
over time. Among this heterogeneity, I uncovered pronounced declines in amphibian 
abundance as well as net abundance increases for birds, mammals and reptiles in the 
Living Planet Database. The taxonomic patterning of population change highlights 
amphibians as a conservation priority, especially as their declines can have further 
cascading effects across trophic levels within ecosystems. Rarity metrics, specifically 
geographic range, mean population size and habitat specificity, as well as IUCN Red List 

Categories, threat types and numbers, and evolutionary history, did not explain the 
heterogeneity in population change across the data analysed in this study. My findings 
caution the use of rarity metrics as a proxy for future global population trends, but suggest 
that such metrics, in particular mean population size, are nevertheless indicators of 
population fluctuations, which might ultimately be related to increased species extinction 
risk. On a global scale, both rare and common vertebrate species face numerous threats 
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due to resource exploitation and habitat change. As human activities continue to 
accelerate, the next key step is to determine how intrinsic factors, such as rarity attributes 
and threats, interact with extrinsic global change drivers and together influence the 
persistence of Earth’s biota. Capturing the complexity of species’ population dynamics 
will improve our estimates of shifts in community composition and ultimately the impact 

of altered ecosystem functions and services around the world. 
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integrated databases and conducted statistical analyses with input from SB, IMS, ADB 
and MD. I created the figures with input from co-authors. SB, MD and SRS wrote the 
code for the rarefaction of the BioTIME studies. IMS. was my primary supervisor, MD 
my co-supervisor and ADB is on my supervisory committee. AM and MD fund the 

compilation of the BioTIME database. I wrote the first draft and all authors contributed to 
revisions. 
 
Data and code availability: Code for the rarefaction of the BioTIME Database is 
available at https://doi.org/10.5281/zenodo.1475218. Code for statistical analyses is 
available at http://doi.org/10.5281/zenodo.1490144. Population and biodiversity data are 
freely available in the Living Planet and BioTIME Databases. The Living Planet 
Database can be accessed on http://www.livingplanetindex.org/data_portal. The 
BioTIME Database can be accessed on Zenodo 
(https://doi.org/10.5281/zenodo.1211105) or through the BioTIME website 
(http://biotime.st-andrews.ac.uk/). The public studies which were included in the version 
of BioTIME I analysed can be downloaded from http://biotime.st-
andrews.ac.uk/BioTIME_download.php. Land-use change data are publicly available in 
the Land Use Harmonization Database (https://luh.umd.edu), the Forest Cover Change 
Database (https://earthenginepartners.appspot.com/science-2013-global-forest) and the 
MODIS Landcover Database (https://modis.gsfc.nasa.gov/data/dataprod/mod12.php). 
 

4.1 Summary 
 
Global biodiversity assessments have highlighted land-use change as a key driver of 
biodiversity change. However, we are lacking empirical evidence of how habitat 
transformations like forest loss and gain are reshaping biodiversity over time. Here, I 
quantified how change in forest cover has influenced temporal shifts in populations and 
ecological assemblages from 6,090 globally-distributed time series across six taxonomic 
groups. I found that local-scale increases and decreases in abundance, species richness, 
and temporal species replacement (turnover) were intensified by up to 48% following 
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forest loss. Temporal lags in population- and assemblage-level shifts after forest loss 
extended up to 50 years and increased with species’ generation time. My findings show 
that land-use change catalyses population and biodiversity change, emphasizing the both 
the positive and negative biotic consequences of land-use change. 
 
4.2 Introduction 
 
Accelerating human impacts are reshaping Earth’s ecosystems (IPBES, 2019). The 
abundance of species’ populations (Chapter 3, Dornelas et al., 2019) and the richness 
(Baeten et al., 2010; Dornelas et al., 2014; Vellend et al., 2013) and composition 
(Dornelas et al., 2014) of ecological assemblages at sites around the world are being 
altered over time in complex ways (Hillebrand et al., 2018; Magurran et al., 2018; Yoccoz 
et al., 2018). However, there is currently only a limited quantitative understanding of how 
global change drivers, such as land-use change, influence the observed heterogeneous 
local-scale patterns in population abundance and biodiversity (Bowler et al., 2020; Leung 
et al., 2017; Yoccoz et al., 2018). In terrestrial ecosystems, much current knowledge 
stems from space-for-time approaches (Betts et al., 2017; Newbold et al., 2015) and 
model projections (Newbold, 2018; Newbold et al., 2018) that attribute population and 
richness declines to different types of land-use change, including reductions in forest 
cover. Yet, space-for-time methods may not accurately represent the effects of global 

change drivers, because they do not account for ecological lags (Elmendorf et al., 2015; 
Mihoub et al., 2017; Yoccoz et al., 2018) and community self-regulation (Gotelli et al., 
2017). Furthermore, ongoing controversy about the diverse impacts of habitat 
fragmentation on biodiversity (Damschen et al., 2019; Fahrig, 2017; Haddad et al., 2017) 
could be in part attributable to a lack of observational data from sites encompassing the 
full spectrum of forest fragmentation. Recent global-scale datasets of past land cover 
reconstructions (Hurtt et al., 2011) and contemporary high-resolution remote-sensing 
observations (Channan et al., 2014; Hansen et al., 2013) provide an unique opportunity 
to quantify landscape-scale decreases and increases in forested areas around the world 
(hereafter, “forest loss and gain”). By integrating forest loss estimates with over five million 
population and biodiversity observations (Dornelas et al., 2018; LPI, 2016), my analysis 
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provides new insights into the influence of land-use change on local-scale population and 
biodiversity change around the planet. 
 
In my study, I set out to conduct a global extent attribution analysis of the influence of 
forest cover change on population and biodiversity change (Figure 1, Appendix 4.1). I 

quantitatively tested specific predictions of the extent and pace of landscape-scale forest 
loss impacts on species’ populations and ecological assemblages across terrestrial 
ecosystems around the planet (Figures 1-2). Land-use change, and particularly forest 
cover loss, alters habitat and resource availability (Elahi et al., 2015; Newbold et al., 2015; 
Sax & Gaines, 2003) and is a global threat for the persistence of terrestrial species (IUCN, 
2017, Figures 2, Appendix 4.12). I thus predicted the greatest impacts on populations and 
biodiversity when time series monitoring encompasses the 10-year period that included 
the largest reduction in forested areas at each site (calculated between 850 and 2015, 
hereafter “all-time peak forest loss”). I also expected greater population and species 
richness declines and higher turnover after, relative to before, contemporary peak forest 
loss - the year of the largest reduction in forested area within the duration of each time 
series. Finally, species with longer generation times typically respond more slowly to 
environmental change (Krauss et al., 2010). I thus predicted lags in ecological responses 
to forest loss to increase with longer generation times across taxa. 
 

4.3 Methods 
 
To relate population and biodiversity change to historic forest loss, I quantified the 
baseline all-time peak forest loss at each site. To relate population and biodiversity 
change to contemporary forest loss, I compared population and biodiversity change 
before and after contemporary peak forest loss. To investigate temporal lags, I quantified 
the time period between contemporary peak forest loss and maximum change in 
populations and assemblages detected after peak forest loss has occurred at each site 
(Figure 1B). I calculated population change (μ) using state-space models that account for 
observation error and random fluctuations (Humbert et al., 2009), and richness change 
(slopes of rate of change over time) using mixed effects models. I quantified temporal 
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change in species composition as the turnover component of Jaccard’s dissimilarity 
measure (change due to species replacement, Baselga, 2010). Turnover is often 
independent of changes in species richness (Hillebrand et al., 2018) and is the dominant 
component of compositional change across time series of ecological assemblages 
(Blowes et al., 2019). I used a hierarchical Bayesian modelling framework, with individual 

time series nested within biomes (Olson & Dinerstein, 2002) to account for the spatial 
structure of the data (see Appendix 4 for further details and sensitivity analyses). 
 
I measured landscape-scale historic and contemporary forest loss by integrating 
information from the Land Use Harmonization (Hurtt et al., 2011) and Global Forest 
Change (Hansen et al., 2013) databases I also examined whether my results were 
consistent across land-use change data sources using the ESA Landcover (ESA Climate 
Change Initiative, 2017) and KK09 (Kaplan et al., 2009) databases. I compared historic 
and contemporary forest loss with temporal population change (trends in the numerical 
abundance of species) and biodiversity change (trends in species richness and turnover 
in assemblage composition, Figures 1-2). I analysed 2729 populations of 730 species 
and biodiversity change in 3361 ecological assemblages (Figures 2A-3). I measured 
population change using the Living Planet Database that includes 133,092 records of the 
number of individuals of a species in a given area over time (LPI, 2016), and biodiversity 
change using the BioTIME database that comprises 4 970 128 records of the number and 
abundance of species in ecological assemblages over time (Dornelas et al., 2018). 
Together, these time series represent a range of taxa including amphibians (388), birds 
(5090), mammals (266), reptiles (76), invertebrates (80) and plants (187) and 2,157 sites 
which cover almost the entire spectrum of forest loss and gain around the world (Figure 
2B). I used a standardised cell size of 96 km2 to match response variables (population 

change, richness change and turnover) to landscape-scale forest change but note that 
analyses were robust to the spatial scale over which I calculated forest change 
(Appendices 4.13-4.14). 
 
I did not predetermine sample size and instead worked with all available temporal 
population, biodiversity and forest cover change data that met my duration criteria. For 
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analyses of population change, I included time series with five or more survey points. For 
analyses of biodiversity change, I included time series with five or more data points when 
analyzing the full time series (using forest loss estimates from the Land Use 
Harmonisation (LUH) database), and time series with two or more data points when 
matching the duration of time series comparisons to the 16-year duration of the Global 

Forest Change (GFC) Database from 2000 to 2016. I calculated forest loss on a 
standardised landscape scale (~96 km2). Both the LUH and GFC databases are 
measured on an annual time step. All statistical models were fitted in a Bayesian 
framework using the brms package v2.1.0 (Bürkner, 2017) in R v3.5.1 (R Core Team, 
2017). Models were run for 6000 iterations, with a warmup of 2000 iterations and four 
chains. Convergence was assessed visually by examining trace plots and using Rhat 
values (the ratio of the effective sample size to the overall number of iterations, with 
values close to one indicating convergence). See Appendix 4 for details on each database 
and statistics. 
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Figure 4.1. Influence of forest loss on population and biodiversity change. I tested 
three pathways through which forest loss can influence the population abundance of 
species and the richness and turnover of ecological assemblages: historical baselines of 
forest loss, timing of contemporary forest loss and temporal lags in population and 
biodiversity responses. A, Conceptual diagram of my predictions outlined with respect to 

population change, richness change and turnover (temporal species replacement). B, 
Analytical workflow for determining all-time and contemporary peak forest loss and 
temporal lags. 
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Figure 4.2. Population and biodiversity monitoring over time broadly spans the 
global variation in forest cover change. A, Locations and duration of 542 Living Planet 
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Database (LPD) and 199 BioTIME studies, containing 6,090 time series from 2,157 sites 
(black outline shows sites that were forested at the start of the monitoring (1,247 sites); 
see Appendix 4.18 for sample size in each woody biome). B, 44% of all time series 
experienced historic or contemporary forest loss of comparable magnitude to forest cover 
change across a simulated random sample of geographical locations (shown on map 

inset in B) from the global distribution of forest cover loss and gain. I did not detect 
directional effects of the magnitude of forest gain across monitored sites (Appendices 
4.4-4.6). C, the number of time series increases over time (top), but the rates of forest 
loss were often higher before the start of monitoring (bottom, for variation in monitoring 
periods among time series, see Appendices 4.2-4.3). Insets in panel C show the 
proportion of study species that are not classified as invasive (top) and that are threatened 
by land-use change, based on species’ IUCN threat assessments (bottom, see Appendix 
4.12 for details).  
 

4.4 Results and discussion 
 

4.4.1 Historical baselines influenced forest loss effects on population and 
biodiversity change 
In line with my first prediction (“historical baselines”), I found that local-scale population 
declines were most pronounced when the monitoring occurred during the period of all-
time peak forest loss (Figures 4.1B and 4.3B-C). For many of the sites represented by 
the time series I studied, dramatic changes in forest cover occurred in the last two 
centuries, with all-time peak forest loss in regions like Europe and North America typically 
in the early 1800’s, before biodiversity, population and satellite monitoring had begun 
(Figures 4.2C and 4.3B). These time series captured over half of the spectrum of 

contemporary forest cover change around the world, in contrast to previous criticisms of 
these data underrepresenting areas with anthropogenic impact (Gonzalez et al., 2016) 
Figure 4.2B-C and 4.3B). Yet, in only approximately 5% of monitored time series forest 
loss led to a conversion in the dominant habitat type (e.g., from primary forest to urban 
areas). Habitat conversions corresponded with both gains and losses in populations and 
biodiversity, with the highest rates of turnover when primary forests were converted to 
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agricultural and urban areas, or to secondary forests (Appendix 4.17). The links between 
historical baselines, the timing of all-time peak forest loss and resulting ecological change 
emphasise the need for a long-term perspective to quantify the full breadth of biodiversity 
change in the Anthropocene (Bowler et al., 2020; Mihoub et al., 2017). 

 

Figure 4.3. Heterogeneity in population and biodiversity trends and land-use 
histories from sites around the world. A, All three metrics of ecological change 
(population change, richness change and turnover) show heterogeneous distributions 
across sites. B, Population monitoring occurred at different time periods relative to all-
time peak forest loss (for 33% of sites before, for 37% during and for 30% of sites after), 
whereas biodiversity monitoring predominantly started after all-time peak forest loss had 

occurred (94% of sites). C, Population declines were most acute when all-time peak forest 
loss occurred during the population monitoring period (slope = -0.01, CI = -0.01 to -0.01; 
see Appendix 4.19 for model outputs). Low sample size for the ‘before’ (101) and ‘during’ 
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(38) categories precluded a similar analysis for richness change and turnover. Numbers 
on A show sample size (i.e., number of time series). 

4.4.2 Contemporary forest loss amplified population and biodiversity 
change 
Contrary to my second prediction (“contemporary forest loss”), I found that forest loss 
acted as a catalyst amplifying both increases and decreases in local-scale populations 
and assemblages over time (Figures 4.3-4.4 and Appendices 4.4-4.6, 4.9-4.10). Across 
time series, more than half of all populations and assemblages (61%) experienced higher 
rates of change after the largest forest loss event within each time series. Contemporary 
peak forest loss intensified population declines, population increases and richness 
losses, but not richness gains, relative to the period before peak forest loss (Figure 4.4). 
In nearly a third of time series (32%), more than 10% of the species in the assemblage at 
the time of contemporary peak forest loss were replaced by new species by the end of 
the time series (Figure 4.4G-H). The assemblages that experienced the most richness 
change also experienced the most turnover (Pearson’s correlation = 0.37, 95% 
confidence intervals = 0.31 to 0.43). The influence of contemporary peak forest loss on 
population and biodiversity change was not strongly correlated to the magnitude of the 
specific forest loss event (Appendices 4.4-4.6). My findings indicate a wide spectrum of 
population and biodiversity responses to forest loss that might be overlooked without 
accounting for temporal dynamics and lagged responses (Betts et al., 2017; Ceballos et 

al., 2017; Newbold et al., 2015, 2018). 
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Figure 4.4. At the site level, population and biodiversity change increase after 
contemporary peak forest loss. In total, population and richness change increased 
across 61% and decreased across 39% of the 1653 time series for which baseline 
comparisons were possible (i.e., the time series were long enough to include at least five 
years before and after forest loss). Only turnover included instances of no difference in 
the amount of change before and after peak forest loss (6% of time series). Distributions 
compare A, population declines (μ), B, population increases (μ), D, richness losses 
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(slopes), E, richness gains (slopes) and G, turnover (Jaccard’s dissimilarity) in the periods 
before and after contemporary peak forest loss, the largest forest loss event during the 
monitoring of each site. Vertical lines over distributions show the mean for each category 
(dotted – before; solid – after). Temporal trends before and after peak forest loss (C, F, 
H) are indicated with lines for individual time series. Light and dark grey points and error 

bars show mean values and 2.5 and 97.5% quantiles. Duration varied among time series 
but was consistent for each individual time series (i.e., n years before forest loss = n years 
after forest loss, n ≥ 5 years; see Figure S8 for relationship between duration and number 
of survey points). Numbers on plots indicate sample size. See Appendix 4.19 for model 
outputs. 
 

4.4.3 Temporal lags spanned from six years to half a century 
In line with my third prediction (“temporal lags”), I found evidence for up to half-century 
ecological lags in local-scale changes in population abundance, species richness and 
turnover following contemporary peak forest loss (Figure 4.5). On average, I documented 
maximum change in populations and ecological assemblages six to 13 years after forest 
loss across taxa. Yet, nearly half of population and biodiversity change (40%) happened 
within three years of peak forest loss, demonstrating that rapid shifts in populations and 
assemblages occur frequently after habitat change (Figure 4.5, Appendix 4.7). Consistent 
with my prediction, the period between peak forest loss and peak change in populations 
and biodiversity was longer for taxa with longer generation times (e.g., large mammals 
and birds, Figure 4.5B, Appendix 4.19). Population declines and increases occurred on 
similar timescales (Figure 4.5C). Losses in species richness lagged behind gains by 
approximately half a year (slope = 0.5, CI = 0.1 – 1.05), indicating that extinction debts 
and immigration credits accumulated at roughly the same speed across taxa. The similar 
pace and temporal delay of population declines and increases, and richness gains and 
losses could help to explain previous findings of community self-regulation (Gotelli et al., 
2017) and no net population change (Chapter 3, Dornelas et al., 2019; Leung et al., 2017) 
and richness change (Dornelas et al., 2014; Vellend et al., 2013) at local scales. Temporal 

lags in biodiversity change have also been observed in post-agricultural forests (Baeten 
et al., 2010; Vellend et al., 2006) and fragmented grasslands (Krauss et al., 2010), where 
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agricultural activity has ceased decades to centuries ago, yet richness and assemblage 
composition change continue to the modern-day. Overall, my results indicate that 
increasing rates of land-use change in the Anthropocene (De Palma et al., 2018; Egli et 
al., 2018) will alter ecosystems on both short- and long-term timescales that need to be 
captured in ongoing and future biodiversity monitoring. 

 

  
Figure 4.5. Temporal lags in population and biodiversity change following 
contemporary peak forest loss. Population and assemblage change after 
contemporary peak forest loss may be delayed by up to half a century, with taxa and 
species with long generation times showing the longest temporal lags. A, I categorised 
lags as time periods of three (dashed horizontal line) or more years between peak forest 
loss during the monitoring for each time series, and peak population/biodiversity change 
(Figure 2B, sample size was 841 time series for population change, 728 for richness 
change and 2,157 for turnover). Bars show mean lag for each taxon; violins show the 
distribution of lag values and the points are lag values for each time series. Numbers on 
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bars indicate how many time series experienced lags out of the total sample size for each 
taxon. B, Temporal lags in mammal and bird population change increased with longer 
species’ generation times. C, Temporal lags were similar across population declines and 
increases, and species richness losses and gains. See Appendix 4.19 for model outputs. 
 

Heterogeneity in responses to forest cover loss could be due to a number of factors, 
including: i) temporal lags in population or assemblage responses as observed in my 
study and elsewhere (Krauss et al., 2010; Mihoub et al., 2017), ii) context specific 
responses to forest loss, such as the same amount of habitat change corresponding to 
biodiversity declines at one site, but increases at another (Betts et al., 2017, 2018, 2019), 
and iii) interactions with other drivers occurring simultaneously with forest loss (Bowler et 
al., 2020; Fridley & Wright, 2018; Spooner et al., 2018). My finding that forest loss was 
concurrent with both declines and increases in populations and assemblages is 
consistent with the varied and often positive effects of habitat fragmentation on 
biodiversity metrics such as species richness (Fahrig, 2017). However, forest loss 
occurring outside of the period of population or biodiversity monitoring, as well as the type 
of woody vegetation being gained and lost, might influence my ability to detect a causal 
link between forest loss and biodiversity change (Isbell et al., 2019; Mihoub et al., 2017). 
Increases in woody vegetation caused by agroforestry or plantations might not reflect 
ecosystem recovery such as with natural succession after forest cover loss (Curtis et al., 
2018; Potapov et al., 2008; Veldman et al., 2019). My finding that forest cover gain did 
not directly correspond with gains in population abundance and species richness 
highlights the need for high-resolution temporal data of the specific vegetation types 
constituting forest cover changes around the world. The heterogeneity of forest cover 
change effects on biodiversity (Banks-Leite et al., 2014; Betts et al., 2017, 2019; Orme et 

al., 2019) demonstrate that caution is warranted with recent calls for global afforestation 
as a climate change mitigation tool (Bastin et al., 2019). 
 
Variation in species’ vulnerability to forest cover loss (Betts et al., 2019; Orme et al., 2019) 
may be contributing to the wide spectrum of population and biodiversity responses to 
shifts in forest cover. Species that have experienced frequent habitat disturbance during 
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their evolutionary history might be more resilient to land-use change, whereas novel 
habitat alterations could have a greater influence on species’ persistence and abundance 
(Betts et al., 2017, 2019; Figure 3). In a post-hoc test, I found that in forest-dominated 
sites, where past disturbances were likely less frequent, declines in species’ abundance 
were more frequent than increases, whereas richness change and turnover did not show 

directional trends (Appendix 4.16). Additionally, in my study, rare and common species, 
as defined by their range size, mean population size and habitat specificity (Rabinowitz, 
1981), responded in similar ways to forest loss (Appendices 4.11-4.12). In contrast to this 
result, space-for-time comparisons that do not account for temporal dynamics and lagged 
responses have found that land-use change impacts rare species more negatively than 
common species (Sykes et al., 2019). Accounting for both inter- and intraspecific 
heterogeneity in species’ vulnerability to forest cover change is key when scaling from 
localised impacts of human activities to global-scale biodiversity patterns and attribution 
of change (Betts et al., 2019; Ceballos et al., 2017; Damschen et al., 2019; Fahrig, 2017; 
Haddad et al., 2017; IPBES, 2019; Orme et al., 2019).  
 
Taxonomic, spatial and temporal imbalances in sampling can make large-scale attribution 
analyses of biodiversity trends and global change drivers challenging and influence the 
inferences I draw from such studies (Appendices 4.2, 4.3, 4.9, 4.11-4.19). For this reason, 
I explored in greater detail three specific challenges of my terrestrial biodiversity 
attribution analyses. First, tropical species and locations are under-represented in current 
open-source temporal biodiversity databases (Figure 2A, Gonzalez et al., 2016, Chapter 
2). In a post-hoc test, I found that in the tropics, where there is intense, often 
unprecedented forest loss, the effects of forest loss were stronger and more negative 
across sites with available data, relative to the rest of the globe (Appendices 4.9, 4.10, 

4.18, 4.19). Second, the spatial scales at which biodiversity is monitored (from 1 m2 to 25 
x 108 km2) and the resolution of forest cover datasets (from 30 m to ~20 km, Appendices 
4.13, 4.14) could introduce spatial mismatches between the driver and response. 
Nevertheless, I found that the heterogeneous relationships between richness change, 
turnover and forest loss were consistent across forest loss calculated on scales from 10 
km2 to 500 km2 (Appendices 4.16A-B). Third, temporal mismatches and lags (Figures 1C 
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and 5) can obscure relationships between forest loss and population and biodiversity 
change. I found that attribution signals were strongest when a peak in forest loss occurred 
during the time series monitoring (Figures 3 and 4). My results indicate that biodiversity 
assessments and global change attribution analyses will be improved by better spatial 
and temporal matching of biodiversity and environmental impact data. 

 

4.5 Conclusion 
In summary, my analysis reveals an intensification of both increases and decreases of 
populations and biodiversity by up to 48% after forest loss at sites around the planet. This 
finding demonstrates heterogeneity in the influence of forest cover change on populations 

and ecological assemblages and challenges the assumption that land-use change 
predominantly leads to population declines and species richness loss (Ceballos et al., 
2017; Newbold, 2018; Newbold et al., 2015). A current assumption underlying existing 
projections of biodiversity responses to land-use change (Newbold, 2018; Newbold et al., 
2015) is that space-for-time approaches accurately reflect longer-term population and 
biodiversity dynamics (De Palma et al., 2018). In contrast, I found temporal lags of up to 
half of a century in population and biodiversity change following forest loss that differed 
across taxa and generation times. My analyses highlight that the local-scale responses 
of populations and assemblages to forest cover loss and gain are complex and variable 
over time. Incorporating the full spectrum of population and biodiversity responses to 
land-use change will improve projections of the future impacts of global change on 
biodiversity and thus contribute to the conservation of the world’s biota during the 
Anthropocene. 
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Chapter 5. Synthesis 
 

5.1 Summary of key findings and synthesis 
 

The main aim of my thesis was to quantify the patterns and drivers of population and 
biodiversity change observed across taxa, realms and sites around the world (Chapter 
1). The key finding from my research is that global change drivers are leading to both 
gains and losses in population abundance and species richness, as well as shifts in 
composition (Figure 5.1). This change is complex and nuanced and no single species’ 
trait or driver on its own can explain the wide range in biodiversity trends across the 
Anthropocene.  
 
In the thesis, I focused on three themes:  

1) Quantifying the types of global change that have occurred across the locations 
represented by global biodiversity databases (Chapter 2). 

2) Capturing the variation of vertebrate population trends across biomes, taxa, rarity 
traits and species’ IUCN Red List status (Chapter 3). 

3) Comparing the historic and contemporary effects of forest cover change on 
temporal shifts in population abundance, species richness and compositional 
turnover across vertebrates, invertebrates and plants (Chapter 4).  

Together, the three data chapters spanned the terrestrial, marine and freshwater realms, 
tens of thousands of locations around the world and records from over 50,000 different 
species. 
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Figure 5.1. Global change drivers are leading to both gains and losses in 
population abundance and species richness, as well as shifts in composition.  
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My main findings were: 
1. Biodiversity datasets span different gradients of the spectrum of global 

change including human use of natural resources and climate change. 
 

In Chapter 2, I quantified what types of survey sites were represented by global 

biodiversity datasets, with a focus on variation in global change over space and time. My 
starting hypothesis was that compilations of biodiversity data would capture only a limited 
sample of the variation of global change intensity around the world. Surprisingly, I found 
that three worldwide ecological databases – Living Planet, BioTIME and PREDICTS – 
occupy high proportions of global change space (between 71% and 78% in the marine 
realm and between 17% to 31% in the terrestrial realm). All three databases included 
sites with moderate to high human use intensity. There were, however, differences in 
representation when it came to intact sites. The Living Planet database included both 
relatively intact sites as well as sites with high human use, pollution and climate change, 
whereas the BioTIME and PREDICTS databases overrepresented sites with high global 
change and underrepresented those with low values of human impact. This heterogeneity 
in global change intensity across population and biodiversity monitoring could contribute 
to the wide distribution of population trends found in global biodiversity and population 
datasets (Chapter 3). 
 
For nearly a decade, a debate has been ongoing around the contrasting findings of no 
net richness change based on time series data and richness declines from space-for-time 
data (Dornelas et al., 2014; Gonzalez et al., 2016; Newbold et al., 2015; Vellend et al., 
2013, 2017). My thesis demonstrates that the global change variation captured by 
population and biodiversity monitoring can vary nearly two-fold within the terrestrial realm 

(e.g., 17% for the BioTIME versus 31% for the Living Planet database). Such data 
compilations represent different combinations of global change drivers such as climate 
change and human use. For example, amphibian time series from the Living Planet 
Database come from sites with predominantly heavy human use, and perhaps 
unsurprisingly, amphibians were also the only taxon found to be declining in abundance 
over time (Leung et al., 2017, 2020, Chapter 3).  
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I found that there were frequent mismatches between the timing of peak global change 
and that of biodiversity monitoring (Chapter 4). This type of mismatch is frequently 
hypothesised and discussed as a major issue in ecology which can lead to 
underestimating the impacts of global change on biodiversity (De Palma et al., 2018; Essl 

et al., 2015; Mihoub et al., 2017). In Chapter 4, I compared vertebrate population trends 
before, during and after peak forest loss at each study site between the years 850 and 
2014. I found that declines in vertebrate abundance tended to occur when all-time peak 
forest loss happened during the period of species’ population monitoring (Chapter 4). In 
the instances when all-time peak forest loss had occurred decades to centuries before 
the first species’ abundance records were collected, I found a wide spectrum of population 
trends, including declines, increases and no net change over time (Chapter 4). My results 
highlight the importance of considering historical legacies in biodiversity analyses and 
accounting for the different temporal trajectories of global change driver intensity around 
the world. 

 
2. Global change space varies across latitudes with greater climate change at 

high latitudes and greater human use nearer to the equator. 
 
In Chapter 2, I quantified the amount of human use, climate change, human population 
density, pollution and invasion pressure across the locations of three worldwide 
biodiversity databases. Biogeographic patterning of global change occurs at the planetary 
scale (Bowler et al., 2020; Crain et al., 2008; Halpern et al., 2015; Sanderson et al., 2002), 
thus I hypothesised that there will be differences in the types and amounts of global 
change estimated for sampling sites across biodiversity datasets. My findings showed 

that Arctic and tropical latitudes occupy the extremes of the global change space 
(Chapter 2, Appendix 2.2) and those were also the regions for which I found different 
global change impacts relative to the rest of the planet. In contrast, global change at 
temperate latitudes spanned a wide spectrum from relatively intact to more disturbed 
sites. Low tropical latitudes, on the other hand, will likely be entering non-analogue 
climate space in the future that might be beyond the boundaries of the current global 
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change space (Fitzpatrick & Hargrove, 2009; Ribeiro et al., 2016; Tovar et al., 2013). My 
results demonstrate that population and biodiversity monitoring unevenly samples global 
change drivers (Chapter 2). Thus, population and biodiversity trends derived from global 
databases may not represent the full magnitude and combination of biodiversity drivers 
across the planet. 

 
In Chapter 3, I compared trends and temporal fluctuations in population abundances of 
vertebrate species across nearly 10,000 sites from different regions around the world. My 
hypothesis was that there would be differences in population change across biomes 
because of the uneven distribution of global change around the world (Chapter 2, Bowler 
et al., 2020; Halpern et al., 2015) and because of differences in species’ vulnerability and 
traits (e.g., terrestrial species could migrate from unfavourable habitats more easily than 
freshwater species, Chichorro et al., 2018; Coll et al., 2012; Concepción et al., 2015; 
Howard et al., 2020; Marini et al., 2010; Morrison et al., 2018). I found that vertebrate 
populations in polar freshwaters, tropical forests, and tropical coral biomes were more 
likely to increase in abundance between 1970 and 2014 (but note that not all species 
were monitored for this entire period). In contrast, populations from the remaining studied 
biomes experienced no net changes during the same study period. Additionally, I found 
that montane and tropical biomes had more pronounced vertebrate population 
fluctuations compared to other biomes (Chapter 3). Many latitudinal bands and biomes, 
however, did not have distinct patterns in population trends and fluctuations. Bringing 
together my findings from Chapters 2 and 3, a possible explanation of the similar 
distributions of population change across most biomes is that in each biome, species’ 
populations are likely experiencing a mix of beneficial and detrimental environmental 
conditions (Bowler et al., 2018; Crain et al., 2008; Darling et al., 2010; Radinger et al., 

2016). Simultaneous exposure to different types of global change driver is likely producing 
a mix of population increases and declines across biomes, mediated by whether or not 
species’ vulnerability to threats is correlated (Vinebrooke et al., 2004). The presence of a 
wide distribution of population trends across biomes suggests that global biodiversity 
maps might obscure local-scale heterogeneity and thus hinder conservation (Wyborn & 
Evans, 2021, but see Schmidt-Traub, 2021).  
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In Chapter 4, I quantified the effects of forest loss on population and biodiversity change 
at sites around the world. My hypothesis was there would be greater population and 
biodiversity change when big forest loss events had occurred during the temporal span 
of each time series, because they impact resource and habitat availability (Elahi et al., 

2015; Newbold et al., 2015; Sax & Gaines, 2003). As seen in Chapter 2, these sites 
represented a range of global change conditions which were then reflected in the 
heterogeneous forest loss impacts I detected on species’ populations and the biodiversity 
of ecological assemblages (Chapter 4). I found that the effects of forest loss on changes 
in population abundance and species richness were up to three times more negative in 
the tropical regions, whereas across the rest of the planet there was a balance of positive 
and negative effects (Chapter 4). Additionally, when forest loss occurred in forest-
dominated areas, there were nearly twice as many population declines as there were in 
intact forest habitats. My results highlight that the landscape context of biodiversity 
monitoring sites is key in interpreting detected trends. 

 
3. The magnitude and pace of global change impacts on biodiversity varies 

across the vertebrate tree of life. 
 

Discovering common patterns of change across organisms from the same taxa is one of 
the cornerstones of macroecology and biogeography (Dornelas et al., 2019; McGill, 
2019). Certain taxa, like amphibians, have been found to be relatively vulnerable to 
diseases, climate change and anthropogenic disturbance (Hof et al., 2011; Jetz & Pyron, 
2018). In Chapter 3, I found that across six vertebrate taxa — birds, mammals, reptiles, 
amphibians, sharks and bony fishes — amphibians were the only taxon experiencing net 

declines in abundance over time. I had additionally hypothesised that such declines would 
be clustered for species that share a closely related evolutionary history and are 
vulnerable to similar threats (González-del-Pliego et al., 2019). Surprisingly, across the 
phylogenies of amphibians, but also reptiles and birds, I found that evolutionary 
relatedness did not explain variation in abundance trends over time. However, the data 
rarely included more than three separate populations from the same species and a 
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broader population sampling might reveal more phylogenetic patterns. The lack of 
phylogenetic patterning could relate to the distribution of global change across sites with 
population monitoring (Chapter 2) as both closely and distantly related species are likely 
exposed to a suite of global change drivers (Howard et al., 2020; Isaac & Cowlishaw, 
2004; Maxwell et al., 2016; Tulloch et al., 2015). Particularly, if species have evolved 

through niche divergence, versus niche conservatism, then their resource and habitat 
requirements, and their sensitivity to threats, might differ, despite close evolutionary 
relatedness (Ahmadzadeh et al., 2013; Buckley et al., 2010; Pearman et al., 2010; Wiens 
et al., 2010). Local-scale changes in population abundance might thus be decoupled from 
the likelihood of evolutionary extinction on a planetary scale (Brook et al., 2006; Fritz et 
al., 2009; Maxwell et al., 2016; Pereira et al., 2012).  

 
I also explored how the impacts of forest loss on population and biodiversity change vary 
across different vertebrate and invertebrate taxa (Chapter 4). My hypothesis was that 
species’ traits would moderate the effects of forest loss on biodiversity, creating 
taxonomic patterns. I did not detect differences in the trends of different taxa following 
reductions in forest cover (Chapter 4). However, cross-taxa differences do not always 
relate only to broad classifications like order or class and can instead be more linked to 
life history traits of different species. In a post-hoc test of temporal lags between big forest 
loss events and population and biodiversity change, I found the greatest lags for groups 
with longer generation times, like trees, larger birds and mammals (Chapter 4). Temporal 
lags need to be incorporated in biodiversity scenarios that currently assume constant 
rates of biodiversity change over time to fully capture the impact of global change on 
species (IPBES, 2019; Isbell et al., 2019). 

 

4. Rarity cannot explain the heterogeneous trends of population change 
observed across taxa and at sites around the world. 
 

Species’ vulnerability to global change is related to metrics like geographic range, mean 
population size and habitat specificity, which together capture a continuum from rarity to 
commonness (Isaac & Cowlishaw, 2004; Newbold et al., 2018; Rabinowitz, 1981). My 
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prediction was that the rarity status of vertebrate species would be related to their 
abundance trends over time, with more declines for rarer species. Surprisingly, I found 
that rare species (those with smaller geographic ranges, smaller mean population sizes 
and narrower habitat specificity) were not more likely to decline in abundance over time 
than common species (Chapter 3). Species’ IUCN Red List status, which is determined 

across the species’ range, was similarly unrelated to the abundance trends of individual 
populations. This decoupling further highlights the heterogeneity in local-scale population 
trends. My findings demonstrate that common species should not be overlooked in 
conservation and reinforce the importance of monitoring species locally, regardless of 
their global status. 

 
Rarity metrics could be interacting with global change drivers and together influencing 
species’ abundance (Newbold et al., 2018; Williams & Newbold, 2021). To test this 
interaction in the context of vertebrate species and forest loss, in Chapter 4 I explored 
whether species with smaller geographic ranges, smaller mean population sizes and 
narrower habitat specificity have more negative abundance trends when forest cover is 
reduced. I found that regardless of whether species were rare or common, they 
experienced the full spectrum of forest loss effects (Chapter 4). Rarity and commonness 
were poor predictors of population responses to forest loss over time. Species are 
frequently exposed to more than one global change driver, for example to both climate 
change and forest loss simultaneously. As a result, species’ abundance could be 
negatively affected by one driver (e.g., forest loss) and positively affected by another (e.g., 
climate warming), producing complex interactions and heterogeneous trends in the 
planet’s biodiversity (Bowler et al., 2018; Vinebrooke et al., 2004; De Laender, 2018; 
IPBES, 2019). 

 
5. The effects of global change drivers on population and biodiversity change 

are rarely unidirectional and instead produce a combination of gains and 
losses. 
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Global change drivers like land-use change, climate change and human exploitation of 
natural resources influence the habitat and persistence of Earth’s biodiversity (IPBES, 
2019). Such interactions are most often hypothesised to have negative effects on the 
abundance of individual species’ populations and the richness and composition of entire 
ecological communities (IPBES, 2019). In Chapter 4, I expected that forest loss would be 

correlated with population declines and biodiversity loss. I focused on large reductions in 
forest cover that occurred over the duration of population and biodiversity time series from 
around the world. I found that after peak forest loss, declining populations declined at 
even greater rates. In contrast to my expectations, my results also showed that increasing 
populations increased more rapidly following forest loss, leading to an amplification of 
both positive and negative change (Chapter 4). Forest loss intensified losses in species 
richness, but not in species richness gains (Chapter 4). In around 35% of studied time 
series, species turnover was higher following a decline in forest cover (Chapter 4). My 
findings of both positive and negative population and biodiversity trends associated with 
forest loss highlight that to accurately predict how global change will impact biodiversity 
in the future, we need to allow predictive models and scenarios to include biodiversity 
gains as well as losses.  

 
Different magnitudes of forest loss occurred across the sites represented by population 
and biodiversity time series (Chapter 1). The influence of the landscape context of forest 
loss is likely important, because the same amount of forest loss could produce very 
different ecological impacts at different sites (Betts et al., 2017, 2018). For example, forest 
loss might reduce the total amount of forest in an area, without dramatically altering 
species richness, alternatively if the forest that was lost was the last remaining patch of a 
particular habitat in a region, species might disappear locally. Changes in dominant 

habitat type were rare in the locations represented in the Living Planet and BioTIME time 
series (< 5% of time series, Chapter 4), in line with the temporal mismatch between the 
intensity of global change and locations where biodiversity monitoring occurs (Chapter 
1). However, when habitat transitions did occur, for example from primary forests to 
human-dominated uses, there was high compositional turnover and newly colonising 
species frequently replaced over 50% of the existing species (Chapter 4). 
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Global change drivers like forest loss can have both immediate as well as temporally 
delayed effects on species’ populations and biodiversity. In addition to Key finding 3, I 
used a post-hoc analysis to examine whether lag times for abundance and species 
richness declines were shorter than for gains. I found that lags were similar across gains 

and losses in population abundance and species richness, suggesting that positive and 
negative changes in populations and ecological assemblages are occurring at similar 
paces (Chapter 4). The simultaneous occurrence and pace of extinctions and 
colonisations at local scales can contribute to the reported trends of no net changes in 
total abundance and species richness detected in global data syntheses (Blowes et al., 
2019; Dornelas et al., 2014; Jones & Magurran, 2018). 
 
Together, my findings demonstrate that global change drivers are influencing temporal 
trends in biodiversity in both positive and negative ways. Instead of a common directional 
response in species’ abundance, species richness and turnover, I found a wide 
distribution of biodiversity gains and losses, some of which can take decades to become 
apparent in monitoring data. The mix of immediate and delayed changes in biodiversity 
highlights the importance of long-term ecological monitoring that can capture the temporal 
dynamics of species and assemblages in continuously shifting landscapes. Incorporating 
temporal estimates of the full spectrum of biodiversity change, not just the extreme 
declines or increases, in scenarios of shifts in the Earth’s biota is important to ensure a 
representative picture of how the planet is changing in the Anthropocene. 
 
In the sections that follow, I discuss the possible mechanisms behind the heterogeneous 
biodiversity responses to global change that I documented in my thesis, with a focus on 

interactions between multiple global change drivers. I then consider the implications of 
my thesis findings for ecological monitoring, biodiversity assessments and scenario 
development. Finally, I recommend directions for future research and conclude by 
summarising the new insights gained from my thesis and how they advance the field of 
global change ecology. 
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5.2 Possible mechanisms behind heterogeneous 
biodiversity responses to global change 
 
Global change is reshaping the planet and in response, biodiversity is shifting in varying 
ways, including declines, gains and stable trends (IPBES, 2019). Declines of primary 
forest cover have been linked with biodiversity loss (Betts et al., 2017), but also with 
amplification of both gains and losses in biodiversity (Chapter 4). Climate warming has 

increased plant species richness on mountain summits (Steinbauer et al., 2018), but 
when looking across different plant, vertebrate and invertebrate taxa, has had weak 
effects on richness and abundance in terrestrial ecosystems (Antão et al., 2020). At 
tropical latitudes, greater exposure to climate change for species living closer to their 
upper thermal limits corresponds with increased physiological constraints (Deutsch et al., 
2008; Sunday et al., 2011). Habitat fragmentation has similarly had mixed effects on 
biodiversity, including no detected effects as well as biodiversity increases (Fahrig, 2017). 
Although variation in the impacts of global change drivers on biodiversity is common, 
understanding how and why this mix of ecological responses arises has remained largely 
unquantified. 
 
There are several, likely interacting factors, that could explain the heterogeneous 
biodiversity responses to global change observed at sites around the world. First, species 
have different traits, allowing some to thrive in a given set of environmental conditions 
while others perish (Chichorro et al., 2018; Poff, 1997; Spooner et al., 2012; Verberk et 
al., 2013). Large-scale biodiversity syntheses usually combine data on hundreds to 
thousands of different species and as a result, when testing the effects of global change 
drivers, the data will likely include species with both positive, negative or null responses 
to the specific type of change. Second, natural ecological processes like community self-
regulation (Gotelli et al., 2017), local extinction and colonisation (Hanski, 1998), and 

population cycles (Krebs & Myers, 1974) can produce a mix of positive, negative and 
stable trends, regardless of global change. Biodiversity is not static and thus, the impacts 
of global change drivers should be evaluated against a baseline of naturally changing 
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biodiversity (Dornelas et al., 2013). Third, species and ecological assemblages are 
usually simultaneously exposed to multiple types of global change, creating cumulative 
effects (Burton et al., 2014; Christensen et al., 2006; Crain et al., 2008; Vinebrooke et al., 
2004). These cumulative effects could be synergistic (the drivers together have greater 
effect on biodiversity than the sum of their effect), antagonistic (one driver has positive 

effects, the other has negative effects, producing no net impact), or additive (the effects 
of the multiple drivers represent the sum of their individual effects, (Vinebrooke et al., 
2004; Darling et al., 2010; Radinger et al., 2016; Rillig et al., 2019, 2021). The magnitudes 
and combinations of global change vary around the world (Blowes et al., 2019; Halpern 
et al., 2015), creating a wide distribution of biodiversity change, likely moderated by 
species traits, natural ecological processes and their interactions with different global 
change drivers (Betts et al., 2017; De Frenne et al., 2013; IPBES, 2019; Isaac & 
Cowlishaw, 2004; Mantyka-Pringle et al., 2012; Suggitt et al., 2018). 

 

5.3 Interactions between global change drivers arising 
from simultaneous exposure to multiple types of 
environmental change 
Ecosystems and the species that form them are usually simultaneously exposed to a 
suite of global change drivers, such as climate change, human use, population density, 
pollution and invasion pressure. When conducting data syntheses of observational data, 
as I did in my thesis, it is very likely that multiple types of environmental change have 
occurred across the duration of the different time series that were part of the analyses. 
In Chapter 4 I found that after peak forest loss, there were negative, positive and stable 

trends in species’ populations and assemblage biodiversity. This heterogeneity could be 
driven by interactions between forest loss and other global change drivers present 
across the sites that I studied. For example, land-use change, specifically forest clearing, 
can lead to a loss of cooler microhabitats across the landscape (De Frenne et al., 2019), 
thus making warm-intolerant species more vulnerable to climate warming (Betts et al., 
2018; De Frenne et al., 2013; González del Pliego et al., 2016; Lawrence & Vandecar, 
2015; Nowakowski et al., 2017; Suggitt et al., 2018). In contrast, rising temperatures can 
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facilitate forest growth by lifting physiological constraints on tree seedling growth across 
latitudes, thus accelerating secondary succession (Fridley & Wright, 2018). Warming and 
alterations in precipitation regimes have also been linked with both increases and 
decreases in species’ vulnerability to land-use change (Mantyka-Pringle et al., 2012). 
Such interactions among global change drivers could produce antagonistic, additive 
and/or synergistic effects on population and biodiversity change (Figure 5.2). 

 
Figure 5.2. Exposure to global change drivers alters ecosystems in a variety of 

ways, and the possible interactive effects of multiple types of drivers can be 

antagonistic, additive or synergistic. One possible mechanism through which such 

interactions arise is the possible correlation among species traits’ and their vulnerability 
to different types of global change. Bubble plots show outputs of simulation models, 
where each site experienced different amounts of climate and land-use change, and 
species responses were regulated based on their climate and habitat preferences. When 
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species vulnerability to the two drivers is correlated, I found more change over time 
(synergy), whereas if a species responds positively to land-use change, but negatively 
to climate change, I found less change in population abundance over time (antagony). 
Figure based on Daskalova et al. (in prep.) “Interactive effects of multiple global change 
drivers on population and biodiversity change across the marine and terrestrial realms” 
(see Appendix 1.7 for abstract). 

5.4 Implications of thesis findings for ecological 
monitoring, biodiversity assessments and scenario 
development 
The key finding of my thesis is that there is a lot of nuance around the population and 
biodiversity change that is driven by different types of global change around the world. 
Such heterogeneity has three key implications for ecological monitoring, biodiversity 
assessments and scenarios for future shifts in the Earth’s biota.  
 

1. The mix of immediate and delayed global change impacts on biodiversity (Chapter 
4) highlights the value of long-term ecological monitoring to capture the temporal 
dynamics of how ecosystems are changing and accurately reflect that in policy and 
conservation. Often monitoring stops once a species has stabilised or once a 
species has become locally extinct, but continued monitoring will produce more 
accurate and precise estimates of biodiversity change. In addition to continuing 
existing monitoring, my research suggests a new way to target the establishment 
of future monitoring by aiming to fill in the gaps in global change space (Chapter 
2). To understand ongoing biodiversity change and create representative 
scenarios for future trajectories, we need data that span not only geographic and 
taxonomic space, but also the variation of global change impacts around the world. 
Establishing long-term ecological monitoring sites that together form a network that 
is representative of the different magnitudes and combinations of global change 
can help bridge small-scale observational studies and planetary-scale scenarios 
and international policies. If ample funding and research effort is dedicated to 
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monitoring biodiversity in a more representative way, we are more likely to make 
informed, evidence-driven decisions and achieve better conservation outcomes. 

  
2. We need to statistically account for the structures and properties of biodiversity 

data to produce better estimates of how species and ecological assemblages are 

changing under the impacts of global changes. The rise of open-access data in 
ecology has facilitated large-scale syntheses across realms, biomes and taxa, but 
such data are also associated with biases, pseudoreplication and correlation over 
time and space. Analytical methods in ecology are continuously advancing, 
allowing us to better reflect data hierarchy, structure and biases in statistical 
models. In Chapter 4, I developed a method to incorporate historical forest loss 
baselines when analysing the effects of forest loss and population and biodiversity 
change. In a side project to this thesis, I showed that after accounting for temporal 
pseudoreplication in biodiversity data whereby records from the same year are 
correlated, significant trends in biodiversity change over time can become non-
significant (Daskalova et al., 2021). Concepts like pseudoreplication, historical 
baselines and geographic or taxonomic bias and spatial and temporal 
autocorrelation are well-established in ecology (Boakes et al., 2010; Diniz-Filho et 
al., 2003; Rousset & Ferdy, 2014; van de Pol & Wright, 2009; Wolkovich et al., 
2014) and we can improve biodiversity assessments by incorporating them into 
statistical analyses. By advancing data syntheses methods and developing 
improved ways to quantify global change space and incorporate historical 
baselines, my research provides strong evidence that can be used in assessments 
like those by the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services (IPBES).  

 
3. The context of findings from large-scale biodiversity syntheses like the ones in my 

thesis is key for interpreting and using such studies as scientific evidence in 
conservation and policy-making. Over the four years of my PhD there were 
numerous debates centred around biodiversity change. From the trends of insects 
(Crossley et al., 2020; Daskalova et al., 2021; Didham et al., 2020; Hallmann et 
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al., 2017; Seibold et al., 2019; Thomas et al., 2019; van Klink et al., 2020) to the 
value of global conservation priority maps (Jung et al., 2021; Schmidt-Traub, 2021; 
Tulloch et al., 2015; Wyborn & Evans, 2021), the impacts of habitat fragmentation 
(Fahrig, 2017; Fahrig et al., 2019; Fletcher et al., 2018; Haddad et al., 2015), and 
the role of tree planting in mitigating climate change (Bastin et al., 2019; Grainger 

et al., 2019; Lewis et al., 2019; Veldman et al., 2019), these discourses have 
questioned the status-quo of global change ecology and though their topics vary, 
a common theme has emerged. Without context, a summary indicator or a mean 
of a distribution of trends risks being misused or miscommunicated by the media. 
My global change space framework (Chapter 2) suggests a way to put the findings 
of biodiversity syntheses in perspective by quantifying the types of locations 
represented by the underlying data in terms of human use, climate change and 
other types of disturbance. Monitoring the entirety of Earth’s biodiversity is not 
achievable but by quantifying and communicating the ecological context of the 
data we do have, be it in terms of the global change space occupied (Chapter 2), 
types of sites surveyed (Chapter 2) or the types of species monitored (Chapter 
3), we can increase the value and use of the millions of open-access biodiversity 
records. 

 

5.5 Directions for future research 
5.5.1 Land abandonment as an underexplored driver of change 
Global change drivers like conversion of natural habitats to agricultural land and climate 
warming are the most frequently studied types of global change (de Chazal & Rounsevell, 
2009; Mazor et al., 2018), but other types of anthropogenic pressure are increasingly 

altering ecosystems too (IPBES, 2019). The less-studied extreme of land-use change, 
land abandonment, is set to outpace the rates of land conversion in the next 50 years 
(Figure 5.3, Baumann et al., 2011; Li & Li, 2017), yet its ecological consequences remain 
poorly understood, particularly at broader scales. There is evidence of increased biotic 
homogenisation following loss of traditional farming practices and a decline in human 
density in rural areas (Amici et al., 2015). In terms of species’ abundance in areas with 
land abandonment, there are findings of both increases and decreases for bird species 
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(Herrando et al., 2014). For herbaceous plants, land abandonment can lead to a decline 
in species richness because of an increase in tree cover density that limits nutrients and 
light (Amici et al., 2015). During a research internship at the German Centre for Integrative 
Biodiversity Research (iDiv), I developed a project to quantify the amount of abandoned 
land has changed between 2006 and 2018 across the EU and the resulting shifts in 

vegetation cover and species’ abundance (see Appendix 1.2 for abstract). I found that 
there were nearly equal instances of abandoned land transitioning to forests as there 
were of abandoned land remaining as grasslands. Overall, the abundance of bird and 
mammal species was higher in areas with land abandonment, particularly for carnivorous 
birds and herbivorous mammals (Figure 5.3). The frequency of land abandonment is 
projected to keep increasing in the next century (Li & Li, 2017). Land abandonment is a 
key part of the global change reshaping the planet’s biota and thus should be incorporated 
into biodiversity assessments and scenarios (Beilin et al., 2014; Katayama et al., 2015; 
Queiroz et al., 2014).  



Chapter 5. Synthesis 

 175 

 
Figure 5.3. Land abandonment occurs across Europe, influencing the population 
abundance of birds and mammals. Map on a shows the number of in-situ (field) 
observations of land abandonment during the EU-wide monitoring done for the LUCAS 
database. White areas on the map show places with no abandonment. Points on b show 
population trends (μ values from state-space models) of birds and mammals. Grey points 
indicate non-carnivorous birds and non-herbivorous mammals, whereas yellow shows 
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carnivorous birds and teal shows herbivorous mammals. Population increases were more 
likely for carnivorous birds. For mammals, there were more increases than declines in 
areas with abandonment, but diet did not explain heterogeneity in trends. Figure based 
on Daskalova and Pereira. (in prep.) “Population change across Europe’s land 
abandonment hotspots” (see Appendix 1.2 for abstract).  

 

5.5.2 Simultaneous exposure to multiple types of global change 
Understanding how different global change drivers together influence the Earth’s 
biodiversity is a key priority for conservation and both international and national policy 
(IPBES, 2019; Mazor et al., 2018; Schmidt-Traub, 2021). The cumulative and potentially 
interactive effects of different stressors are frequently the focus of experimental and 
manipulative studies (Birk et al., 2020; Blake & Duffy, 2010; Townsend et al., 2008) but 
extending such research to observational data has been challenging. Cumulative and 
interactive effects have remained poorly defined, but there are recent suggestions for 
unified frameworks for defining the effects of multiple global change drivers (Orr et al., 
2020; Rillig et al., 2021, Figure 5.2). A lack of data with high enough temporal and spatial 
resolution, as well as difficulties associated with isolating confounding factors (De Palma 
et al., 2018), have hindered large-scale syntheses of biodiversity change and multiple 

types of global change. Thanks to recent advances in remote sensing and statistics as 
well as the rise of open-access data in ecology, we can now bring together diverse data 
streams (e.g., biodiversity time series, species’ traits, magnitudes of global change) to 
better understand biodiversity change during a time of complex changes in ecosystems 
around the world. For example, we now know that changes in climate influence 
biodiversity responses to land-use change (Williams & Newbold, 2020). Future research 
can explore the interactions not only between climate change and land-use change, but 
also among other important, yet understudied drivers like pollution, abandonment and 
human depopulation (Figure 5.3), marine exploitation and the spread of invasive species. 
 
In a collaboration with Diana Bowler, Anne Bjorkman, Amanda Bates, Shane Blowes, 
Laura Antaõ, Anne Magurran, Maria Dornelas and Isla-Myers-Smith, I am building on my 
PhD research and particularly Chapter 4 to explore how multiple drivers influence 
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population and biodiversity change. I am focusing on cumulative driver intensity 
(combined intensities of human use, climate change, human population density, pollution 
and invasive species pressure) and the possible interactive effects of human use and 
climate change on biodiversity trends. From my preliminary analyses, I have found that 
higher cumulative driver intensity does not correlate with higher magnitudes of population 

change, richness change or turnover in neither the terrestrial realm, nor the marine realm. 
My findings further showed that interactive effects between human use and climate 
change were most often synergistic in tropical and polar zones across both land and sea. 
At those latitudes, higher intensity of both human use and climate change was associated 
with greater population and biodiversity change. Such interactive effects were lacking 
from temperate regions. This project is pre-registered on the Open Science Framework 
(https://osf.io/qjr27/?view_only=56d98233baa047fcb2d5fe554103f01e) and I am 
continuing to work with our co-authorship team to explore the effects of multiple drivers 
on biodiversity change in greater detail. By showing how human activities, both singly and 
in combination, are altering biodiversity, this project could contribute to filling key research 
gaps for policy and global biodiversity assessments (IPBES, 2019; Mazor et al., 2018). 

 

5.5.3 Landscape context of biodiversity change 
Linking local-scale estimates of biodiversity change with landscape-scale ecological 
processes and environmental variation can provide insights into the mechanisms of the 
ongoing reorganisation of ecological communities (de Chazal & Rounsevell, 2009; De 
Palma et al., 2018; Elmhagen et al., 2015; IPBES, 2019, Chapter 4, Figure 5.4). Much of 
the knowledge we have about how biodiversity is being altered by global change comes 

from data collected at small spatial scales, bringing issues of scale and precluding us 
from understanding processes that occur at larger scales, like species colonisation and 
extinction (Batary et al., 2011; Chase et al., 2018, 2019; Hanski, 1998, Chapter 1 section 
1.5). Additionally, by focusing on quadrats, plots or small study areas, we might be 
excluding species which occur in close proximity to the sampling areas but not within 
them. Thus, biodiversity monitoring undersamples the actual biodiversity represented 
within landscapes. This landscape-scale diversity where species which are not found 
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within a given survey area but could potentially colonise the habitat if the conditions 
become suitable is sometimes referred to as “dark diversity” (Lewis et al., 2016; Pärtel, 
2014; Pärtel et al., 2011; Trindade et al., 2020). Dark diversity is also a term used to mean 
species absent from a study site but present in the surrounding region and potentially 
able to inhabit particular ecological conditions (Partel et al. 2011). Here, I refer to the 

diversity in the species pool that is absent in sampling plots.  
 
During my PhD, I established a project with the International Tundra Experiment network 
and conducted my own Arctic fieldwork across three summers from 2017 – 2019 (Rixen 
et al., 2019) to test how landscape-scale biodiversity influence measured biodiversity 
trends (Appendix 1.1), I extended the dark diversity concept to include a temporal element 
(Figure 5.4). First, I quantified how many plant species occur at the landscape-scale 
(within 100-meter radius of the 1x1 m monitoring plots) across 15 sites in the alpine and 
Arctic tundra. In this study, I defined as dark diversity the species which are part of the 
species pool but have never been recorded inside the long-term monitoring plots over the 
duration of plot-scale surveys at each site (between 10 and 20 years). I found that species 
pool size varied by an order of magnitude, from around 10 species to over a hundred 
(Figure 5.4). The amounts of dark diversity were similarly variable, suggesting that there 
is colonisation potential and over time, new species might become present in the 
monitoring plots (Figure 5.4). These findings demonstrate that though all of these tundra 
sites would be classified as from the same biome in a global analysis, they each have 
different landscape contexts and varying temporal dynamics when it comes to species 
extinction and colonisation. I am continuing to explore biodiversity change through 
collaborative data synthesis among the ITEX network. To quantify landscape-scale 
biodiversity and better understand the impacts of localised biodiversity change on larger-

scale biodiversity trends, future research can link biodiversity data with information on 
microclimate and landscape heterogeneity (sometimes termed “geodiversity”), species 
pool size and dark diversity (Alahuhta et al., 2020; De Frenne et al., 2013, 2013; Hjort et 
al., 2012; Lembrechts et al., 2020; Parks & Mulligan, 2010; Trindade et al., 2020; 
Zellweger et al., 2020). 
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Figure 5.4. Species pool sizes of vascular plants vary across the tundra and there 
is high dark diversity around the long-term monitoring plots part of the 
International Tundra Experiment (ITEX) network. Plot a shows the landscape on 

Qikiqtaruk-Hershel Island (derived from drone images) together with the locations of the 
first individual of each new species encountered during the species pool survey. The 
same protocol was also conducted on 14 other sites (plot b). Accumulated species 
richness (plot c) was calculated over a 100-meter radius, with the centre of the middle 
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1x1 m long-term monitoring plot as the starting point for the survey. Dark diversity (d) was 
defined as the number of species which occur within 100 meters of the long-term 
monitoring plots but have not been detected inside the plots across the duration of the 
monitoring. Figure based on Daskalova et al. (in prep) “Plant species pools and dark 
diversity across the tundra biome” (see Appendix 1.1 for abstract). 
 

5.6 Conclusion 
Global change drivers are reshaping biodiversity around the world, creating a mix of 

gains, losses and stable trends (IPBES, 2019). Such shifts in the Earth’s biota influence 
the functioning of ecosystems around the world and the services they provide for 
humanity (Benayas et al., 2009; Elmhagen et al., 2015; Isbell et al., 2011; Rosa et al., 
2020; Smale et al., 2019). Understanding how and why biodiversity is changing over time, 
around the world and across the tree of life is key for conservation decision-making and 
can help link local-scale changes with global-scale policies and scenarios for the future 
(Agardy, 2005; Geijzendorffer et al., 2016; Mazor et al., 2018). The upcoming Convention 
on Biological Diversity’s Post-2020 Global Biodiversity Framework will set the direction 
for international policy and goals in the coming decade. Quantifying biodiversity change 
over time can help track short-term progress towards conservation targets and improve 
long-term scenarios for plants, animals and other organisms around the planet (Di Marco 
et al., 2019; Nicholson et al., 2019; Pereira et al., 2020; Rosa et al., 2020).  
 
The aim of my thesis was to determine how population and biodiversity change varied 
across taxa, realms and sites around the world. Each of the over 50,000 locations 
included in my PhD research represents a diversity of species, each with its own traits, 
threats and vulnerabilities, and multiple environmental changes brought by the 
accelerating global change in the Anthropocene. Across all of them, a common theme of 
heterogeneous impacts of global change on both short and long timescales emerged. 
Biodiversity projections often assume that the impacts of global change are constant over 

time and frequently extrapolate estimates from space-for-time data to project future 
trajectories of change. Broadly, my thesis findings highlight the need to incorporate the 
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full distribution of global change impacts on biodiversity into future scenarios, including 
lagged and temporally-variable shifts in species’ abundance, species richness and 
community composition.  
 
My key findings were: 1) Biodiversity datasets span different gradients of the global 

change spectrum, helping us to interpret heterogeneous results (Chapters 2, 3 and 4). 
2) Ecosystems at different latitudinal bands around the world occupy different parts of the 
global change space, providing context for biogeographic patterns in population and 
biodiversity change (Chapters 2, 3 and 4). 3) The magnitude and pace of global change 
impacts on biodiversity varies across the vertebrate tree of life (Chapters 3 and 4). 4) 
Rarity cannot explain the heterogeneous trends of population change observed across 
taxa and at sites around the world (Chapters 3 and 4). 5) The effects of global change 
drivers on population and biodiversity change are rarely unidirectional and instead 
produce a combination of gains and losses (Chapter 4). My PhD research indicates that 
just as ecosystems and the biodiversity within them are complex, so are the drivers of 
biodiversity change in the Anthropocene. My findings suggest that by embracing the 
nuance around biodiversity change following land-use change, climate change and other 
transformations of the planet and by reflecting this nuance in biodiversity assessments 
and conservation actions, we will better protect global biodiversity under increasing 
anthropogenic pressure.  
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Appendix 1. Supporting information for Chapter 1. 
Introduction. 
Appendix 1.1 Abstract for “Species pools and dark diversity across the tundra 
biome” project.  
 
Title: Dark diversity in the tundra: the source of future biodiversity change? 
 
Authors: Gergana N Daskalova, Isla Myers-Smith, Christian Rixen, Anne Bjorkman, 
Toke Høye, Mats Björkman, Ingibjörg Svala Jónsdóttir, Isabel Barrio, Sonja Wipf, Greg 
Henry, Elise Gallois, Zoe Panchen, Sofie Agger, Anne Tolvanen, Hans Cornelissen, 
Rien Aerts, Jake Harris, Nicoletta Cannone, Petr Macek, Francesco Malfasi, Signe 
Normand 
 
Abstract: Tundra plant communities are responding as the climate continues to warm, 
with shifts in community composition and traits observed across many tundra sites. 
However, from where across the landscape new species come and how the larger 
species pool influences local-scale biodiversity change remains unknown. Traditional 
plant surveys often capture scales of only several square meters, leaving many 
unmonitored species that by chance could be absent in small plots. This so-called “dark 
biodiversity” could be a hidden source of future plant biodiversity change. Here, we bring 

together decades of monitoring observations with the first findings from the International 
Tundra Experiment Species Pool Protocol to reveal the magnitude of dark biodiversity in 
tundra ecosystems and the links between local compositional changes and the larger 
species pool. 
 
Across 15 sites including over 30 vegetation types, we found that on average there are 
30 species present within 100 m radius of long-term monitoring plots, which have never 
been recorded inside the plots. The amount of dark diversity varied considerably among 
sites (sd = 21 species), as did the rate of species accumulation with distance across 
different landscapes (Figure 5.4 in Chapter 5). We are currently integrating the ground-
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based species pool and plot-scale community composition data with information on 
topography and microhabitats derived from aerial drone imagery. This combination will 
allow us to determine which parts of the tundra landscape this dark diversity occupies – 
environmentally similar or more variable habitats, or the warmest microclimates. 
Understanding the relationships between the species pool, dark diversity and plot-scale 

diversity can help us find the hotspots of plant biodiversity across tundra landscapes and 
will improve predictions of future changes in the richness and composition of tundra 
ecosystems with warming. 
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Appendix 1.2 Abstract for “Land abandonment and population change in Europe” 
project. 
 
Title: Accelerating land abandonment is reshaping ecosystems and biodiversity across 
Europe 
 
Authors: Gergana N. Daskalova, Henrique M. Pereira 
 
Abstract: Land-use change is altering terrestrial ecosystems globally, but most of our 
knowledge focuses on intensification, leaving the effects of abandonment unknown. We 
asked how land abandonment in Europe varies over space and time, what the dominant 
land cover trajectories are following abandonment, and how vertebrate population 
abundance changes in areas with land abandonment. We found that land abandonment 
has nearly doubled across Europe over the last decade, leading to shifts in land cover 
and ecosystem structure. In the mid-latitudes (~45-55º N), abandoned land transitioned 
into grassland and shrublands, while post-abandonment woodlands occurred across the 
whole continent. In areas with abandonment, we found more net population increases 
than in places without abandonment, particularly for herbivorous mammals and 
carnivorous birds (Figure 5.3 in Chapter 5). As urbanisation and rural depopulation are 
predicted to increase, land abandonment will likely alter habitats and biodiversity on 
even larger scales and influence the functioning of ecosystems in Europe and beyond. 
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Appendix 1.3 Abstract for “Methods to account for temporal pseudoreplication in 
biodiversity time series analysis” project. 
 
This project has been published as: 
 

Daskalova, G. N., Phillimore, A. B., & Myers‐Smith, I. H. (2021). Accounting for year 
effects and sampling error in temporal analyses of invertebrate population and 
biodiversity change: a comment on Seibold et al. 2019. Insect Conservation and 
Diversity, 14(1), 149-154. https://doi.org/10.1111/icad.12468 
 
Abstract 

1. An accumulating number of studies are reporting severe insect declines. These 
studies aim to quantify temporal changes in invertebrate populations and 
community composition and attribute them to anthropogenic drivers. 

2. Seibold et al. 2019 (Nature, 574, 671–674) analysed arthropod biomass, 
abundance and species richness from forest and grassland plots in a region of 
Germany and reported declines of up to 78% between 2008 and 2018. However, 
their analysis did not account for the confounding effects of temporal 
pseudoreplication. 

3. We show that simply by including a year random effect in the statistical models 
and thereby accounting for the common conditions experienced by proximal sites 
in the same years, four of the five reported declines become non-significant out 
of six tests overall. 

4. To place recent estimates of insect trends in a broader context, we analysed 
invertebrate biomass, abundance and richness from 640 time series from 1167 

sites around the world. We found that the average trends across the terrestrial 
and freshwater realms were not significantly distinguishable from no net change. 
Shorter time series that are likely most affected by sampling error variance – 
such as those in Seibold et al. 2019 (Nature, 574, 671–674) – yielded the most 
extreme decline and increase estimates. 



Appendix 1 

 205 

5. We suggest that the media uptake of negative trends from short time series may 
be serving to exaggerate the ‘insect Armageddon’ and could undermine public 
confidence in research. We advocate that future research uses appropriate 
model structures to build a more robust understanding of biodiversity change. 
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Appendix 1.4 Abstract for “Highlighting a balanced view of insect trends” project. 
 
This project has been published as: 
 
Dornelas, M., & Daskalova, G. N. (2020). Nuanced changes in insect 

abundance. Science, 368(6489), 368-369. 
https://www.science.org/lookup/doi/10.1126/science.abb6861  
 
Abstract: Drastic declines in insect biomass, abundance, and diversity reported in the 
literature have raised concerns among scientists and the public (1–3). If extrapolated 
across Earth, biomass losses of ∼25% per decade (1) project a potential catastrophe 
developing unnoticed under our noses. The phrase “insect Armageddon” has captured 
the collective attention and shined a spotlight on one of the most numerous and diverse 
groups of organisms on the planet. Yet, insects are critically understudied. For example, 
the BioTIME database (4)—a compilation of biodiversity time series—contains records 
for 22% of known bird species but only 3% of arthropods (the phylum that includes insects 
and spiders). On page 417 of this issue, van Klink et al. conduct a thorough global 
assessment of insect abundance and biomass trends and paint a more nuanced picture 
than that predicted by extrapolations (5). 
 
References for abstract: 
1. C.A.Hallmann et al.,PLOS ONE 12,e0185809(2017).  
2. B. C. Lister, A. Garcia, Proc. Natl. Acad. Sci. U.S.A. 115, E10397 (2018). 
3. S. Seibold et al., Nature 574, 671 (2019). 
4. M. Dornelas et al., Glob.Ecol.Biogeogr. 27,76(2018). 

5. R. van Klink et al., Science 368, 417 (2020). 
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Appendix 1.5 Abstract for “Ecosystem change following mammal reintroductions 
in Australia” project. 
 
This project has been published as: 
 

Palmer, B. J., Valentine, L. E., Lohr, C. A., Daskalova, G. N., & Hobbs, R. J. (2021). 
Burrowing by translocated boodie (Bettongia lesueur) populations alters soils but has 
limited effects on vegetation. Ecology and Evolution, 11(6), 2596-2615. 
https://doi.org/10.1002/ece3.7218 
 
Abstract: Digging and burrowing mammals modify soil resources, creating shelter for 
other animals and influencing vegetation and soil biota. The use of conservation 
translocations to reinstate the ecosystem functions of digging and burrowing mammals is 
becoming more common. However, in an increasingly altered world, the roles of 
translocated populations, and their importance for other species, may be different. 
Boodies (Bettongia lesueur), a commonly translocated species in Australia, construct 
extensive warrens, but how their warrens affect soil properties and vegetation 
communities is unknown. We investigated soil properties, vegetation communities, and 
novel ecosystem elements (specifically non-native flora and fauna) on boodie warrens at 
three translocation sites widely distributed across the species’ former range. We found 
that soil moisture and most soil nutrients were higher, and soil compaction was lower, on 
warrens in all sites and habitat types. In contrast, there were few substantial changes to 
vegetation species richness, cover, composition, or productivity. In one habitat type, the 
cover of shrubs less than 1 m tall was greater on warrens than control plots. At the two 
sites where non-native plants were present, their cover was greater, and they were more 

commonly found on boodie warrens compared to control plots. Fourteen species of native 
mammals and reptiles were recorded using the warrens, but, where they occurred, the 
scat of the non-native rabbit (Oryctolagus cuniculus) was also more abundant on the 
warrens. Together, our results suggest that translocated boodie populations may be 
benefiting both native and non-native flora and fauna. Translocated boodies, through the 
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construction of their warrens, substantially alter the sites where they are released, but 
this does not always reflect their historic ecosystem roles. 
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Appendix 1.6 Abstract for “Upscaling of individual species dynamics to 
community trends in biodiversity and composition using vegetation change data 
sets” project. 
 
This project is published as a preprint and is in revision at Ecology Letters. 

 
Staude, I., Pereira, H. M., Daskalova, G. N., Bernhardt-Römermann, M., Diekmann, M., 
Pauli, H., ... & Baeten, L. (2021). Consistent replacement of small-by large-ranged plant 
species across habitats. EcoEvoArxiv preprint. https://ecoevorxiv.org/ujky2/  
 
Abstract: The direction and magnitude of long-term changes in local plant species 
richness are highly variable among studies, while species turnover is ubiquitous. 
However, it is unknown whether the nature of species turnover is idiosyncratic or whether 
certain types of species are consistently gained or lost across different habitats. To 
address this question, we analysed the trajectories of 1827 vascular plant species over 
time intervals of up to 78 years at 141 sites in three habitats in Europe – mountain 
summits, forests, and lowland grasslands. Consistent across all habitats, we found that 
plant species with small geographic ranges tended to be replaced by species with large 
ranges, despite habitat-specific trends in species richness. Our results point to a 
predictable component of species turnover, likely explained by aspects of species’ niches 
correlated with geographic range size. Species with larger ranges tend to be associated 
with nutrient-rich sites and we found community composition shifts towards more nutrient-
demanding species in all three habitats. Global changes involving increased resource 
availability are thus likely to favor large-ranged, nutrient-demanding species, which are 
typically strong competitors. Declines of small-ranged species could reflect not only 

abiotic drivers of global change, but also biotic pressure from increased competition. Our 
study highlights the need to consider the traits of species such as the geographic range 
size when predicting how ecological communities will respond to global change. 
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Appendix 1.7 Abstract for “Cumulative effects of global change drivers are 
stronger at latitudinal extremes”. This project is pre-registered on the Open Science 
Framework (https://osf.io/qjr27/?view_only=56d98233baa047fcb2d5fe554103f01e). 
 
Authors:  
Gergana Daskalova, Diana Bowler, Anne Bjorkman, Amanda Bates, Shane Blowes, 
Laura Antaõ, Anne Magurran, Maria Dornelas, Isla-Myers-Smith 

Abstract: Marine and terrestrial ecological communities are under pressure from 
accelerating global change, yet we lack quantitative attribution of simultaneous exposure 
to different drivers. We tested the relationships between cumulative intensity of climate 

change, human use, pollution and invasion risk, and changes in over 7300 species 
populations and 44 500 communities using the largest available time series databases 
(Living Planet and BioTIME). Correspondence between global change and population 
and biodiversity shifts was greater in marine versus terrestrial areas. We found synergistic 
driver effects in tropical and polar zones across both land and sea, where higher intensity 
of multiple anthropogenic impacts was associated with greater population and biodiversity 
change. In contrast, in temperate zones, we found antagonistic effects, whereby drivers 
act in opposing directions, potentially producing no net population and biodiversity 
change. By showing how human activities, both singly and in combination, are altering 
biodiversity, these results could contribute to policy and global assessments. 
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Appendix 2. Supporting information for Chapter 2. 
Representation of global change drivers across 
biodiversity datasets. 

 
Appendix 2.1. Global change representation varies across taxa. Figure shows 
Principal Component Analysis of the magnitudes of human use, climate change, human 
population density, pollution and invasion potential across the locations of the Living 
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Planet, BioTIME and PREDICTS databases, split by taxa, as well as one million randomly 
sampled locations across the full extent of the globe (in grey). PCA axes omitted for visual 
clarity. Upwards PCA arrow shows climate change, arrow pointing right shows human 
population density. Arrows show direction and magnitude of PCA scores. Human use, 
pollution and invasion potential were correlated with human population density (see 

Figure S11 in the supplementary information of Bowler et al. 2020). Thus, climate change 
and human population density together capture the two dominant axes of global change 
variation. For details on the global change driver layers, see Bowler et al. 2020. 
Annotations show the percentage overlap between the 95% prediction ellipses covered 
by random sampling of global change space and the variation in global change sampled 
by the different databases across taxa. 
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Appendix 2.2. Ecosystems at different latitudes occupy distinct parts of global 
change space. Figure shows Principal Component Analysis of the magnitudes of human 
use, climate change, human population density, pollution and invasion potential. The PCA 
is based on one million simulated random locations spanning the globe to represent an 
unbiased sample of the marine and terrestrial surface of the world. Colours indicate 
different latitudes. Places in the Arctic, for example, are characterised with high climate 
change and low human use and human population density. The tropics, in contrast, 
occupy a larger area and thus have more variable global change conditions, including 

moderate to high human use and moderate to high climate change. 
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Appendix 2.3. Model outputs for all statistical analyses. Term names starting with “b” 
refer to fixed effects and sigma indicates the residual variance. Continuous variables 
(intensities of global change drivers) were scaled between zero and one to make them 
comparable. I used Bayesian general linear models and I analysed the terrestrial and 
marine data separately.  

 
Model Term Estimate Lower 

95% CI 
Upper 
95% CI 

Rhat 

Terrestrial global change 
drivers across databases and 
the world 

b_intercept 0.518 0.507 0.528 1.002 

b_samplinglivingplanet 0.070 0.058 0.081 1.001 

b_samplingbiotime -0.144 -0.157 -0.131 1.002 

b_samplingpredicts -0.024 -0.038 -0.010 1.001 

b_drivercumulative -0.109 -0.123 -0.094 1.002 

b_driverhuman_population -0.379 -0.393 -0.365 1.002 

b_driverhuman_use -0.113 -0.127 -0.098 1.001 

b_driverinvasions -0.350 -0.365 -0.336 1.001 

b_driverpollution -0.290 -0.305 -0.276 1.001 

b_samplinglivingplanet.drivercumulative 0.072 0.056 0.089 1.001 

b_samplingbiotime.drivercumulative 0.391 0.372 0.409 1.002 

b_samplingpredicts.drivercumulative 0.199 0.179 0.218 1.001 
 

b_samplinglivingplanet.driverhuman_population 0.298 0.282 0.315 1.001 
 

b_samplingbiotime.driverhuman_population 0.723 0.706 0.742 1.002 
 

b_samplingpredicts.driverhuman_population 0.568 0.549 0.588 1.001 
 

b_samplinglivingplanet.driverhuman_use -0.061 -0.077 -0.044 1.001 
 

b_samplingbiotime.driverhuman_use 0.328 0.311 0.347 1.001 
 

b_samplingpredicts.driverhuman_use 0.198 0.179 0.219 1.001 
 

b_samplinglivingplanet.driverinvasions 0.362 0.345 0.378 1.001 
 

b_samplingbiotime.driverinvasions 0.787 0.767 0.805 1.002 
 

b_samplingpredicts.driverinvasions 0.551 0.531 0.571 1.000 
 

b_samplinglivingplanet.driverpollution 0.219 0.204 0.236 1.000 
 

b_samplingbiotime.driverpollution 0.675 0.657 0.693 1.001 
 

b_samplingpredicts.driverpollution 0.432 0.413 0.453 1.000 
 

sigma 0.231 0.230 0.232 1.000 
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Marine global change drivers 
across databases and the world 

b_intercept 0.484 0.460 0.507 1.000 

b_samplinglivingplanet 0.002 -0.024 0.027 1.000 

b_samplingbiotime 0.013 -0.010 0.037 1.000 

b_drivercumulative -0.030 -0.064 0.004 1.001 

b_driverhuman_population -0.194 -0.226 -0.157 1.001 

b_driverhuman_use -0.110 -0.144 -0.076 1.000 

b_driverinvasions -0.133 -0.168 -0.101 1.000 
 

b_driverpollution -0.155 -0.188 -0.121 1.000 
 

b_samplinglivingplanet.drivercumulative 0.121 0.085 0.160 1.001 
 

b_samplingbiotime.drivercumulative 0.107 0.073 0.141 1.001 
 

b_samplinglivingplanet.driverhuman_population 0.158 0.123 0.196 1.001 
 

b_samplingbiotime.driverhuman_population 0.006 -0.028 0.041 1.001 
 

b_samplinglivingplanet.driverhuman_use 0.212 0.175 0.248 1.001 
 

b_samplingbiotime.driverhuman_use 0.228 0.194 0.262 1.000 
 

b_samplinglivingplanet.driverinvasions 0.201 0.165 0.236 1.000 
 

b_samplingbiotime.driverinvasions 0.134 0.100 0.168 1.000 
 

b_samplinglivingplanet.driverpollution 0.192 0.156 0.229 1.000 
 

b_samplingbiotime.driverpollution 0.166 0.132 0.199 1.000 
 

sigma 0.274 0.273 0.274 1.000 

Terrestrial temperature change 
(Living Planet Database) 

b_intercept 0.011 0.009 0.013 1.000 

b_periodduringmonitoring 0.017 0.015 0.020 1.000 

sigma 0.080 0.080 0.081 1.000 

Marine temperature change 
(Living Planet Database) 

b_intercept 0.004 0.001 0.007 1.000 

b_periodduringmonitoring 0.013 0.009 0.017 1.000 

sigma 0.050 0.048 0.051 1.000 

Terrestrial temperature change 
(BioTIME) 

b_intercept 0.027 0.024 0.031 1.000 

b_periodduringmonitoring -0.011 -0.017 -0.007 1.000 

sigma 0.104 0.102 0.105 1.000 

Marine temperature change 
(BioTIME) 

b_intercept 0.010 0.009 0.012 1.000 

b_periodduringmonitoring 0.008 0.007 0.010 1.000 

sigma 0.058 0.057 0.058 1.000 
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Appendix 2.4. Metadata and web links for each variable dataset included in the 
global change driver layers used to quantify global change space and extract driver 
information for the sites represented by the Living Planet, BioTIME and PREDICTS 
databases. The table is extracted from Bowler et al., 2020 where there are additional 
driver data details. T denotes “Terrestrial” and M – “Marine”. 

Variable Realm Best Data 
Layer 

Time 
series 

Resolution Description/Url/Reference 

Temperatu
re 

T CRU v 4.02 Yes 0.5° mean monthly and yearly temperatures (°C) 

https://crudata.uea.ac.uk/cru/data/hrg/ 

 (Harris et al. 2014) 

Aridity 
change 

T CRU v 4.02 Yes 0.5° ratio of mean monthly and yearly pet (mm day-1) and 
precipitation (mm) 

https://crudata.uea.ac.uk/cru/data/hrg/ 

 (Harris et al. 2014) 

Sea 
surface 
temperatu
re 

M HadISST Yes 1° mean monthly and yearly sea surface temperatures 
(°C) 

https://www.metoffice.gov.uk/hadobs/hadisst/data/dow
nload.html 

 (Rayner et al. 2003) 

Ocean 
acidificati
on 

M Ocean 
Acidification 

Yes* 

 (2000
-2009 

vs 
1870) 

1 km2 change in aragonite saturation state 

https://www.nceas.ucsb.edu/globalmarine/impactbyacti
vity 

 (Halpern et al. 2008) 

Pasture T Pasture 
fraction 

No 

 (2000
) 

5' fraction of cell area (0-1) based on agricultural 
inventory data and satellite-derived land cover data 

http://www.earthstat.org/ 

 (Ramankutty et al. 2008) 

Cropland T Cropland 
fraction 

No 5' fraction of cell area (0-1) based on national and 
subnational agricultural data and satellite-derived land 

cover data 
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 (2005
) 

 (Fritz et al. 2015) 

Cattle 
density 

  Gridded 
Livestock of 
the World 

No 

 (2005
) 

1 km FAOSTAT national estimates and modelled 
downscaling 

 (Robinson et al. 2014) 

Forest 
loss 

T Land-Use 
Harmonizati

on 2 
(primary 

forest 
cover) 

Yes 0.25° fraction of cell area (0-1) using FAO national wood 
harvest volume data and an ecosystem model 

http://luh.umd.edu/ 

 (Hurtt et al. 2013) 

Urban 
cover 

T MODIS No 

 (2001
) 

5' Urban cover (0 or 1) based on satellite-derived land 
cover data 

http://glcf.umd.edu/data/lc/ 

 (Friedl et al. 2010) 

Fishing M Commercial 
fishing 
layers 

No 

 (1999
-2003) 

1 km2 tons of caught fish per ton of carbon 

https://www.nceas.ucsb.edu/globalmarine/impactbyacti
vity 

 (Halpern et al. 2008) 

Population 
density 

T SEDAC 
population 

data v4 

No 

 (2000
) 

30” UN-adjusted population density 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-
population-density/data-download 

 (Center for International Earth Science Information 
Network - CIESIN - Columbia University 2017) 

Coastal 
population 

M Coastal 
population 

No 

 (1992
-2002) 

1 km2 number of people within 25 km radius 

https://www.nceas.ucsb.edu/globalmarine/impactbyacti
vity 

 (Halpern et al. 2008) 
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N 
deposition 

T Atmospheri
c nitrogen 
deposition 

No 

 (1993
) 

5º x 3.75º mg N/m2 of total inorganic nitrogen (N), NHx (NH3 and 
NH4+), and NOy 

http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=83
0 

 (Dentener 2006) 

Fertilizer 
applicatio
n 

T Nitrogen 
fertilizer 

application 
(v1) 

No 

 (1994
-2001) 

0.5° kg of Nitrogen fertilizer per hectare of cropland 

http://sedac.ciesin.columbia.edu/data/set/ferman-v1-
nitrogen-fertilizer-application 

 (Potter et al. 2010) 

Pesticides T Riverthreat.
net: 

Pesticide 
loading 

No 

 (2000
) 

0.5° kg of pesticide per hectare of cropland 

http://www.riverthreat.net/data.html 

 (Vorosmarty et al. 2010) 

Light 
pollution 

T/M NOACC 
NGDC 

stable night 
lights 

No 

 (2006
) 

1 km radiance values 

https://knb.ecoinformatics.org/#view/doi:10.5063/F1571
8ZN 

 (Halpern et al. 2008) 

Coastal 
pollution 

M Pesticide, 
Fertilizer 

No 

 (1993
-2002) 

1 km2 average annual use in agricultural land 

https://knb.ecoinformatics.org/#view/doi:10.5063/F1571
8ZN 

 (Halpern et al. 2008) 

Shipping 
pollution 

M Shipping 
pollution 

No 

 (2004
-2005) 

1 km2 ship activity (number of ships) 

https://knb.ecoinformatics.org/#view/doi:10.5063/F1571
8ZN 

 (Halpern et al. 2008) 

Invasions T Accessibilit
y (Travel 

time) 

No 

 (2000
) 

30” travel time to major cities (in hours and days) 

http://forobs.jrc.ec.europa.eu/products/gam/ 

 (Nelson 2008) 

Invasions M Port volume No 

 (1999
-2003) 

1 km2 amount of cargo traffic at ports 

https://knb.ecoinformatics.org/#view/doi:10.5063/F1571
8ZN 
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 (cargo 
volume at 

ports) 

 (Halpern et al. 2008) 
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Appendix 3. Supporting information for Chapter 3. Rare 
and common vertebrates span a wide spectrum of 
population trends 

 

Appendix 3.1. Conceptual diagram of the first stage of my analyses where I 
calculated population trends and fluctuations. I analysed vertebrate population 
time series from the Living Planet Database (133,092 records) covering the period 

between 1970 and 2014. These time series represent repeated monitoring surveys of 
the number of individuals in a given area (species’ abundance over time), to which I 
refer as “populations”. Diagram shows one sample population of Red squirrel (Sciurus 
vulgaris). I quantified two aspects of population change – overall change in abundance 
over time (population trends) and abundance variability over time (population 
fluctuations). I used state-space models that account for observation error and random 
fluctuations (Humbert et al., 2009). The input abundance data for the state-space 
models were scaled to a common magnitude between zero and one to analyse within-
population relationships to prevent conflating within-population relationships and 
between-population relationships (van de Pol & Wright, 2009). Squirrel photo by 
author. 

Time
Ab
un
da
nc
e

1st stage analyses: Quantify population change

INPUT OUTPUT
Trend

Fluctuations

Sample population

QUESTION

MODELS

Abundance data from population 
time-series with more than 5 

survey points 
(Living Planet Database)

Population trend (μ), population 
fluctuations (σ2) and observation 

error (τ2) estimates for each 
population

How has the abundance of monitored vertebrate populations 
changed over time?

Abundance ~ Year using state-space models 
(one per population time-series)



 
Appendix 3 

 

221 
 

 

Time

Ab
un
da
nc
e

1st stage analyses: Quantify population change

2nd stage analyses: Test heterogeneity in population trends and fluctuations

INPUT OUTPUT
Trend

Fluctuations

Sample population

QUESTION

MODELS

Abundance data from population 
time-series with more than 5 

survey points 
(Living Planet Database)

Population trend (μ), population 
fluctuations (σ2) and observation 

error (τ2) estimates for each 
population

How has the abundance of monitored vertebrate populations 
changed over time?

Abundance ~ Year using state-space models 
(one per population time-series)

INPUT

Population trend (μ), population 
fluctuations (σ2) and observation 

error (τ2) estimates for each 
population

QUESTIONS

MODELS

How do vertebrate population trends and fluctuations 
vary across latitudes, realms and biomes?

μ ~ latitude, random = species
μ ~ 1 + realm, random = species
μ ~ 1 + biome, random = species
σ2 ~ latitude, random = species
σ2 ~ 1 + realm, random = species
σ2 ~ 1 + biome, random = species

GEOGRAPHIC PATTERNS

TAXONOMIC PATTERNS

RARITY PATTERNS 

IUCN CONSERVATION STATUS AND TREATS

QUESTIONS

MODELS

How do vertebrate population trends and fluctuations vary 
across taxa and phylogenies?

μ ~ 1 + taxa, random = species
σ2 ~ 1 + taxa, random = species
μ ~ 1, random = species + phylogeny
σ2 ~ 1, random = species + phylogeny

+
Bird, amphibian and reptile 

phylogenies

QUESTIONS
How do vertebrate population trends and fluctuations vary 
across rarity metrics?

μ ~ log(geographic range), random = species
μ ~ log(mean population size), random = species
μ ~ habitat specificity, random = species
σ2 ~ log(geographic range), random = species
σ2 ~ log(mean population size), random = species
σ2 ~ habitat specificity, random = species

MODELS

+
Bird and mammal geographic 

range, species’ mean population 
size, species’ habitat specificity

+
Species’ IUCN conservation 

status and IUCN threats 
categories

QUESTIONS
How do vertebrate population trends and fluctuations 
vary across species’ IUCN Red List Categories and type 
and number of threats?

μ ~ 1 + IUCN Red List Category, random = species
μ ~ 1 + threat type, random = species
μ ~ number of threats, random = species
σ2 ~ 1 + IUCN Red List Category, random = species
σ2 ~ 1 + threat type, random = species
σ2 ~ number of threats, random = species

Prior structure 1:
Hierarchical models in a Bayesian framework 

with weakly informative (flat) priors

Pr(μ) ∼ N(0, 108)  
Pr(σ2) ∼ Inverse Wishart (V = 0, nu = 0)

Prior structure 2:
Hierarchical models in a Bayesian framework 

with weakly informative (parameter expanded) 
priors and a variance-covariance structure that 

allows the slopes of population trends and 
fluctuations to covary for each random effect.

Pr(μ) ∼ N(0, 108)  
Pr(σ2) ∼ Inverse Wishart (V = 1, nu = 1)

OUTPUT

Effect sizes for each tested metric

Prior structure 1
Prior structure 1

Prior structure 2
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Appendix 3.2. Conceptual diagram of the second stage of my analyses where I 
quantified the geographic, taxonomic, rarity and threat patterns within 
vertebrate population trends and fluctuations. I modelled the trend and fluctuation 
estimates from the first stage (Appendix 3.1) across latitude, realm, biome, taxa, rarity 
metrics, phylogenetic relatedness, species’ conservation status and threat type using 
a Bayesian modelling framework (Hadfield, 2010). Each model included a species 
random intercept effect to account for the possible correlation between the trends of 
populations from the same species. The prior structure (weakly informative priors) was 
identical across all models except the phylogeny models from the taxonomic patterns 
section, where the prior structure allowed for an additional phylogeny random effect. 

See methods for additional details.  
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Appendix 3.3. The duration of monitoring varied by realm and taxa. Distribution 
of monitoring duration across (a) all time series, (b) realms and (c) taxa. In my study, 
I included time series with more than five survey points in time, with the dashed line 
representing five years and solid lines showing the mean duration for each category. 
Numbers in legend correspond to sample size in each category. 
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a Across all time-series b Across realms c Across taxa

Elasmobranchii (127)        Actinopterygii (1626)        Amphibia (193)        Aves (5854)        Mammalia (1158)        Reptilia (322)
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Appendix 3.4. The Living Planet Data represent a broad range of geographic 
locations, ecological settings and taxonomic groups. My analysis of the patterns 
in vertebrate population trends and fluctuations includes time series across realms (a) 
and different taxa (b), with a global geographic distribution of records. Numbers in 
legend correspond to sample size in each category.  

b Distribution of population time-series across taxa

a Distribution of population time-series across realms

Freshwater (2570)        Marine (2418)        Terrestrial (4298)

Duration 10 20 30 40

−0.2−0.10.0 0.1 0.2
mu10        20        30        40

Elasmobranchii (127)        Actinopterygii (1626)        Amphibia (193)

Aves (5854)        Mammalia (1158)        Reptilia (322)

Duration 10 20 30 40 system Terrestrial Marine Freshwater

Class Elasmobranchii Actinopterygii Amphibia Mammalia Reptilia Duration 10 20 30 40

Duration 10 20 30 40 system Terrestrial Marine Freshwater

Class Elasmobranchii Actinopterygii Amphibia Mammalia Reptilia Duration 10 20 30 40
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Appendix 3.5. The distribution of population trend values across time series was 
not sensitive to the omission of the first five (left-truncation) or the last five years 
(right-truncation) of population records and it differed from a null distribution 
derived from randomised data. Following Fournier et al., 2019, I tested the time 
series that I analysed for site-selection bias. Removing the first five survey points 
reduces the bias stemming from starting population surveys at points when individual 
density is high, whereas removing the last five years reduces the bias of starting 
surveys when species are very rare. There were slightly fewer trends centred on zero 
(no net change in abundance over time) when I left- and right-truncated the data, 
suggesting that longer time series are more likely to show no net changes in 
abundance (see Appendix 3.6 for a visualization of population trends versus 
monitoring duration. I also compared the distribution of estimated population trends 
against a null hypothesis (b). To derive a null distribution, I used a randomisation 
approach. Within each time series, I randomised the abundance data, keeping the 
overall range of the original data. The two peaks of μ are apparent in the overall 
distribution of time series data. These peaks are created by many weakly positive and 

negative population trends from longer time series that often are bird species from 
terrestrial systems. I hypothesised that there might a publication bias against no net 
change studies, or a bias against including such studies in global databases.
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Appendix 3.6. Both positive and negative vertebrate population trends were 
smaller in magnitude for longer time series of data. Monitoring duration results are 
for 9286 populations from 2084 species. Population trends (μ) were estimated for all 
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populations monitored for more than five time points using state-space models (a, d) 
and linear models (b). Population fluctuations (c) are plotted on a log10 y axis and 
represent the estimates for process noise (σ2, the process noise is the total variance 
around the population trend minus the variance attributed to observation error) derived 
from state-space models. Error bars on (a) and (b) show 95% confidence intervals and 
their centres show population trends from state-space models (a) and linear models 
(b). The sample sizes for the duration categories were as follows 5 - 10 years: 2084 
time series; 10 - 25 years: 3358 time series; 25 - 44 years; 3844 time series. Plot (e) 
shows the raw population trend data behind 12 time series which had the same 
population trend values (μ = 0.20). These time series are part of a “band” of time series 

which had very similar population trend estimates. Eighty, or approximately 1% of the 
time series I analysed form linear relationships over time with errors around the slopes 
of <0.001, such that I suspect these data might be modelled rather than measured 
population data. The presence of modelled data within the dataset may help partially 
explain the low variance bands of σ2 values (c) and the pattern of two peaks in weak 
population increases and decreases for longer time series (d). Please see Appendix 
3.19 sections “Time series with low variation” and “Clustering in the values of 
population trends and fluctuations” for further details.  
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Appendix 3.7. Number of survey points within time series positively correlated 
with time series duration. I included time series with more than five survey points in 
time in my analyses, but populations were not always monitored in each intervening 
year. Green line shows a linear model fit of survey points versus duration. There was 
a minimum of six time points for each time series. Among the time series I analysed, 
18% had a duration of less than 10 years, 30% had a duration between 10 and 20 
years, 18% had a duration between 21 and 30 years, and 33% had a duration between 
31 and 44 years. See Appendix 3.3 for the density distribution of monitoring duration 
for the studies I included in my analyses. 
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Appendix 3.8. Population fluctuations did not show distinct biome-specific patterns, except for montane and tropical biomes 

where fluctuations were more pronounced compared to the rest of the biomes I studied. The five estimates (centre points of 

error bars) for each category refer to different analytical approaches, where the response variables in the models were: 1) the standard 

error around the slope estimates of the linear model fits of abundance versus year (circles), 2) half of the 95% confidence interval 

around the μ value of population change (triangles), 3) half of the 95% confidence interval around μ weighted by τ2, (full squares), 4) 

the process noise (σ2) from the state-space models, and 5) the standard deviation of the raw data for each population time series 

(empty squares). The process noise is the total variance around the population trend minus the variance attributed to observation 

error. The effect sizes were standardized by dividing the effect size by the standard deviation of the corresponding input data. Error 

bars show 95% credible intervals. 
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Appendix 3.9. Birds and mammals with larger mean population sizes were more 
likely to experience population increases. I tested for interaction effects of rarity 
and taxa on population trends and, except for mean population size for mammals and 
birds, rarity traits were not significant predictors of population change. Teal colour 
indicates posterior means where the 95% credible intervals did not overlap zero, grey 
colour indicates the opposite. Error bars show 95% credible intervals, and their centres 
show effect sizes. The sample size was 7901 population time series for the habitat 
specificity model and 4310 population time series for the mean population size model.  
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Appendix 3.10. Variation in vertebrate population trends was not explained by 

habitat specificity. Habitat specificity was calculated as the number of different 
habitats occupied by each species which I derived by surveying the ‘Habitat and 
Ecology’ profile for each species on the IUCN Red List website. The μ values of 
population change are derived from state-space model fits of changes in abundance 
over the monitoring duration for each population. Line shows model fit and shaded 
area shows 95% credible intervals. See Appendix 3.22 for full model outputs. This 
figure is based on populations monitored in the UK, see Figure 3.3c for the effects of 
habitat specificity on population trends across bird and mammal species globally.  
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Appendix 3.11. The three rarity metrics used in this study were weakly 

correlated at both UK and global scales. See Appendix 3.21 for sample sizes on 
each geographic scale.  
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Appendix 3.12. There was no systematic difference in the distribution of 

population trends across commonly used abundance metrics in the Living 
Planet Database. Population trends represent μ values from state-space Numbers on 
the x axis correspond to sample size in each category. Density plots show the density 
distribution of population trends across sampling units, points show the raw values 
and boxplots show the mean, first and third quartiles and boxplot whiskers that cover 
1.5 times the interquartile range. Population data where the units are an index were 
more likely to have weakly increasing or decreasing trends with many populations with 
μ values around 0.025 and -0.025. These μ estimates are reasonable trend estimates 
for these time series; however, there seem to be population within the Living Planet 
Database that are modelled, particularly for studies with longer duration which could 
partially explain these peaks in the population trend estimates near zero (see Figures 
3.1, 3.2 and Appendices 3.5 and 3.6).  
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Appendix 3.13. Population trends and fluctuations did not show geographic 

patterning within the UK. Results include 508 populations from 237 species in the 
UK. See methods for additional details on the different ways I quantified trends and 
fluctuations. 
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Appendix 3.14. The effects of rarity on population trends and fluctuations were 
consistent at both UK (pictured here) and global scales (Figure 3.3. Rare species 
were not more likely to decline than common species. Populations from species with 
smaller mean population sizes and populations from habitat generalist species were 
more likely to fluctuate. The μ values of population trend (plots a-c) and the σ2 values 
of population fluctuation (d-f) were derived from state-space model fits of changes in 
abundance over the monitoring duration for each population. The population 
fluctuations represent the process noise from the state-space models which is the total 
variance around the population trend minus the variance attributed to observation 
error. Lines on plots a-f show model fits and 95% credible intervals. See Appendix 
3.21 for sample sizes for each analysis and Appendices 3.22 and 3.23 for model 
outputs. 
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Appendix 3.15. There were no phylogenetic patterns in the population trends 
and fluctuations of birds, amphibians and reptiles. Phylogeny refers to variance 
explained by phylogenetic relationships, species refers to variance explained by 

within-species differences (some species were represented by more than one 
population, thus introducing species-level variance), and residual variance refers to 
the variance not explained by phylogeny and species effects. The figure shows violin 
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plots of the distributions of posterior means for phylogenetic, species and residual 
variance across taxa (the wider the violin, the more records there are with that value). 
The distributions are based on ten models for each taxon for each type of population 
change using 10 random trees to account for phylogenetic uncertainty. Phylogeny 
effects were calculated based on a branch length covariance matrix. See Appendix 
3.24 for full model outputs.  
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a Population trends from state-space models

b Population trends from linear models

c Population fluctuations from state-space models
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Appendix 3.16. Population change is ubiquitous across the planet, with no 
distinct hotspots of declines, increases or fluctuations. Maps show geographic 
distribution of time series colour-coded by the magnitude of change experienced. The 
population fluctuations represent the process noise from the state-space models which 
is the total variance around the population trend minus the variance attributed to 
observation error. See Methods for additional details on calculating trends and 
fluctuations.  
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Appendix 3.17. Species across the whole spectrum of the IUCN Red List 
Categories are distributed around the world, with a concentration of least 

concern species in Northern America and Europe. In my study, I included time 

series with more than five survey points in time (b), with the dashed line five years and 
solid lines showing the mean duration for each category. Populations from least 
concern species were monitored for longer durations. Numbers next to each category 
show sample size.  

Least concern (6523)             

Near threatened (505)             

Vulnerable (582)             

Endangered (304)             

Critically endangered (152)

a Distribution of population time-series across IUCN Red List Categories

b Time-series duration across IUCN 
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Appendix 3.18. Population fluctuations did not differ based on the type and 
number of threats based on species’ IUCN Red List profiles. Fluctuations were 
estimated using the process noise (σ2) values from state-space model fits of changes 

in abundance over the monitoring duration for each population. Densities in (a) show 
distributions of fluctuation estimates across different threats. Line in (b) shows model 
fit and shaded area shows 95% credible intervals, where “number of threats” refers to 
the number of different threats that each species, whose populations are locally 
monitored, could be exposed to throughout their distribution range, based on species’ 
IUCN Red List profiles. See Methods for how the types of threats were derived and 
Appendix 2 for model outputs. The sample sizes in (a) (number of population time 
series) were as follows: Intentional use: (large scale) [harvest] – 530, Agriculture and 
forestry effluents – 790, Intentional use: (subsistence/small scale) [harvest] – 567, 
Unintentional effects: (large scale) [harvest] – 807, Housing & urban areas – 730, 
Habitat shifting and alteration – 1331, Intentional use (species is the target) – 1208, 
Annual & perennial non-timber crops – 917, Hunting & trapping terrestrial animals – 
1777, fishing & harvesting aquatic resources – 1514. The sample size in (b) was 3501 
population time series. 
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Appendix 3.19 Data limitations 

Taxonomic and geographic gaps 

My analysis is based on 9286 monitored populations from 2084 species from the 
largest currently available public database of population time series, the Living Planet 
Database (LPI, 2016). Nevertheless, the data are characterized by both taxonomic 
and geographic gaps that can influence my findings. For example, there are very few 
population records from the Amazon and Siberia (Figure 3.1b) – two regions currently 
undergoing rapid environmental changes due to land-use change and climate change 
respectively. Additionally, birds represent 63% of all population time series in the 
Living Planet Database, whilst there were fewer records for taxa such as amphibians 
and sharks that were undergoing declines (Figure 3.2 and Appendix 3.4). On a larger 
scale, the Living Planet Database under-represents populations outside of Europe and 
North America and over-represents common and well-studied species (McRae et al., 
2017). I found that for the populations and species represented by current monitoring, 
rarity does not explain variation in population trends, but I note that the relationship 
between population change and rarity metrics could differ for highly endemic specialist 
species or species different to the ones included in the Living Planet Database 

(Newbold et al., 2018). As ongoing and future monitoring begins to fill in the taxonomic 
and geographic gaps in existing datasets (Hochkirch et al., 2021), we will be able to 
re-assess and test the generality of the patterns of population change across biomes, 
taxa, phylogenies, species traits and threats. 

 

Monitoring extent and survey techniques 

The Living Planet Database combines population time series where survey methods 
were consistent within time series but varied among time series. Thus, among 
populations, abundance was measured using different units and over varying spatial 
extents. There are no estimates of error around the raw population abundance values 
available and detection probability likely varies among species. Thus, it is challenging 
to make informed decisions about baseline uncertainty in abundance estimates 
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without prior information. I used state-space models to estimate trends and 
fluctuations to account for these limitations as this modelling framework is particularly 
appropriate for analyses of data collected using disparate methods (Knape et al., 
2011; Leung et al., 2017a; Pedersen et al., 2011). Another approach to partially 
account for observer error that has been applied to the analysis of population trends 
is the use of occupancy models (van Strien et al., 2016). Because the precise 
coordinates of the polygons where the individual populations were monitored are not 
available, I was not able to test for the potential confounding effect of monitoring 
extent, but my sensitivity analysis indicated that survey units do not explain variation 
in the detected trends (Appendix 3.12).  

 

Temporal gaps 

The population time series from the Living Planet Database that I used cover the 
period between 1970 and 2014, with both duration of monitoring and the frequency of 
surveys varying across time series. I omitted populations which had less than five time 
points of monitoring data, as previous studies of similar population time series data 
have found that shorter time series are less likely to capture directional trends in 
abundance (Wauchope et al., 2019). In Chapter 4, I found significant lags in population 
change following disturbances (forest loss) and that population monitoring often 
begins decades to centuries after peak forest loss has occurred at a given site. The 
findings of Chapter 4 suggest that the temporal span of the population monitoring does 
not always capture the period of intense environmental change and lags suggest that 
there might be abundance changes that have not yet manifested themselves. Thus, 
the detected trends and the baseline across which trends are compared might be 
influenced by when monitoring takes place and at what temporal frequency. 
Challenges of analysing time series data are present across not just the Living Planet 
Database that I analysed, but more broadly across population data in general, 
including invertebrate datasets (Didham et al., 2020). Nevertheless, the Living Planet 
Database represents the most comprehensive compilation of vertebrate temporal 
population records to date, allowing large-scale analyses possible into the patterns of 
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vertebrate trends and fluctuations around the world (Buschke et al., 2021; Leung et 
al., 2017b, 2020). 

 

Time series with low temporal variation 

Eighty populations (<1% of the 9286 time series) had very little variance (see Appendix 
3.27 for full references for those studies). The majority of those studies are for bird 
species and come from the North American breeding bird survey with a measurement 
unit of an index (USGS, 2011). I have also observed some time series that appear to 
show logistic relationships with little natural variance (e.g., time series 468, 10193, 
17803, see Appendix 3.28 for full references). Inspecting the raw data showed that 

some populations have abundances which follow an almost perfect linear or 
logarithmic increase over time, as could be the case for modelled, versus raw field 
data. I provide the references for these studies and cannot definitively attribute the low 
variance to a particular cause across all studies. Some of these studies are reported 
in units that are an index which may not capture variation in the same way as other 
raw units of population data. Some of these time series may represent modelled 
population data based on demographic information rather than only direct 
observations of populations (e.g., time series 1355 Nolet & Baveco, 1996). I chose to 
not remove studies that may not be raw observation time series based on visual 
inspection of trends to avoid introducing bias against populations with naturally low 
variation into my analysis.  

 

Clustering in the values of population trends and fluctuations 

I found a clustering of population trend and fluctuations values in some parts of the 
population change spectrum. For example, I found two peaks – in small increases and 
in small decreases over time – which were most prevalent in terrestrial bird studies 
and species which were monitored using an index (Figure 3.2, Appendix 3.12). 
Overall, 11.4% of time series had trend values between 0.02 and 0.03 and 11.6% of 
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time series had trend values between -0.03 and -0.02. There was also a similar, but 
smaller, clustering around trends of 0.25 and -0.25. All reported population trends are 
from models that converged successfully, and visual inspection indicated to us that 
the μ values are appropriate estimates for the individual time series (Appendix 3.6e). 
I investigated the population time series where the value of the population trends over 
time were estimated to be the same value and found that they came from a variety of 
taxa, locations and survey methods (Appendix 3.6e). I hypothesised that there might 
be a publication bias against publishing no net change studies, which could explain 
the trough in μ values of around zero in long-term studies. The clustering of values for 
some time series may sometimes be associated with the same time series that also 

have low variance (Appendix 3.6e, see discussion above). With the information 
available in the Living Planet Database metadata, I cannot fully explain the clustering 
in population trends. I advocate for more detailed metadata in future versions of the 
Living Planet Database to allow researchers to filter the database appropriately for 
individual analyses. 

 

Challenges in estimating geographic range 

Estimating geographic range across taxa, and specifically for species that are not birds 
or mammals, remains challenging due to data limitations. I used a static measure of 
geographic range, which does not account for changes in species distributions over 
time. Furthermore, species could naturally have a small range or the small range size 
could be due to historic habitat loss (Magurran & Henderson, 2003). The UK 
populations included in the Living Planet Database are predominantly from species 
with wide geographic ranges (Appendix 3.25), and my global scale analysis of the 
relationship between population change and geographic range is based on mammal 
and bird data. As data availability improves, future research will allow us to test the 
effect of geographic range on the trends of other taxa, such as amphibians and sharks.  
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Appendix 3.20 Sensitivity analyses 

Trends relative to null expectation 

I tested whether the number of increasing and decreasing populations trends differed 
from a null expectation using a data randomisation approach (Appendix 3.5b). I used 
linear models to estimate trends in the data and randomised data with identical 
structure to the Living Planet Database. I found that there were over 10 times more 
population declines and increases in the real data relative to the randomised data 
(2.29% of trends were declining and 2.30% were increasing in the randomised data, 
versus 28.9% and 32.5% of time series which had significant negative and positive 
slopes in the real data, respectively). 

Monitoring duration, sampling methods and site-selection bias 

To assess the influence of monitoring duration on population trends, I used a Bayesian 
linear model. I modelled population trend (μ) as a function of monitoring duration 
(years) for each population, fitted with a zero intercept, as when duration is zero, no 
population change has occurred. Monitoring duration was weakly positively related to 
vertebrate population trends, with slightly greater population increases found for longer 
duration studies (Appendix 3.6, Appendix 3.22). There was a similar weakly positive 
effect of number of time points within time series (Appendix 3.22). Additionally, I tested 
if monitoring duration influenced the relationships between population trends across 
systems, and population trends across taxa. I found that duration did not influence 
those relationships, except for reptiles, where declines were more frequent as 
monitoring duration increased (Appendix 3.22). Variation in population trends was not 
explained by sampling method across the five most used abundance metrics 

(population index, number of individuals, number of pairs, number of nests and 
population estimate, Appendix 12). Following Fournier et al. 2019, I tested the time 
series that I analysed for site-selection bias. Removing the first five survey points 
reduces the bias stemming from starting population surveys at points when individual 
density is high, whereas removing the last five years reduces the bias of starting 
surveys when species are very rare. The distribution of population trend values across 
time series was not sensitive to the omission of the first five (left-truncation) or the last 
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five years (right-truncation) of population records (Appendix 3.5a). Additionally, I used 
a data randomisation approach to compare the distribution of trends from the real data 
to a null distribution and found different patterns (Appendix 3.5b). Overall, my 
sensitivity analyses suggest that my findings are robust to the potential confounding 
effects of differences in monitoring duration, sampling method and site-selection. 

Comparison of modelling approaches 

I conducted the following supplementary analyses: in the second-stage Bayesian 
models estimating population trends across systems, biomes, taxa and rarity metrics, 
1) I weighted μ values by the square of τ2, the observation error estimate derived from 
the state-space models (Humbert et al., 2009), 2) I used slopes of linear model fits of 
abundance (scaled at the population level, centred on zero and with a standard 
deviation of one) (van de Pol & Wright, 2009) instead of the μ estimates from state-
space models, 3) I modelled the standard error around the slope values of the linear 
models, the error around μ (half of the 95% confidence interval) and the standard 
deviation of the raw population data for each time series as additional metrics of 
population variability. To allow comparison, I scaled the different metrics of population 
variability to be centred on zero and with a standard deviation of one before they were 

used as response variables in models. All different analytical approaches yielded very 
similar results (see main text and Appendices 3.5, 3.6, 3.9 and 3.22). 
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Appendix 3.21. Number of species and populations included in analyses. 

Scale Analysis Number of 
species 

Number of 
populations 

Number of 
species with >3 

populations 
Global System 2074 9286 834 

Biome 2074 9286 834 
Taxa    

- Actinopterygii 544 1626 151 
 - Amphibia 78 193 21 
 - Aves 968 5852 538 
 - Mammalia 306 1158 94 
 - Reptilia 110 322 16 
Red List status 1702 8064 708 
Latitude 2074 9286 834 
Duration 2074 9286 834 

UK Geographic range 167 381 32 
Population size 112 253 19 
Habitat specificity 144 289 29 
Red List status 153 364 31 
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Appendix 3.22. Model outputs from global analyses. Sigma is the overall model 

residual variance. Net population change was estimated using μ values derived from 

state-space models of population abundance versus time and slopes of linear models 

of population abundance versus time. The weighted μ models included μ as a 

response variable, weighted by τ, the observation error estimate derived from the 

state-space models. The fluctuation models included the process noise (σ2) values 

from state-space models, half of the 95% confidence interval around the μ value of 

population change, the standard error around the slopes of linear models of population 

abundance versus time, and the standard deviation of the raw time series data for 

each population. The process noise is a metric of population fluctuations, whereas the 

rest of the metrics show population variability. The weighted fluctuation models were 

weighted by t, the observation error estimate derived from the state-space models.  

Model 
name Variable Post. 

mean 
Lower 
95% CI 

Upper 
95% CI 

Eff. 
sample 
size 

pMCMC Effect 

Latitude - μ (Intercept) 0.003 0.0002 0.005 18,000 0.037 fixed  
Decimal.Lati
tude 

0.00001 -0.00004 0.0001 18,000 0.687 fixed 
 

sigma 0.003 0.003 0.003 15,774 
 

residual 
Realm - μ Freshwater 0.003 -0.001 0.006 18,000 0.146 fixed  

Marine 0.004 0.0003 0.007 18,597 0.029 fixed  
Terrestrial 0.003 0.0002 0.005 18,000 0.035 fixed  
sigma 0.003 0.003 0.003 16,324 

 
residual 

Realm - 
weighted 

Freshwater 0.004 -0.001 0.009 18,000 0.156 fixed 
 

Marine 0.003 -0.002 0.008 18,000 0.168 fixed  
Terrestrial 0.003 0.00001 0.007 18,000 0.053 fixed  
sigma 0.003 0.003 0.003 13,851 

 
residual 

Realm - 
slope 

Freshwater 0.006 -0.0002 0.012 18,000 0.067 fixed 
 

Marine 0.003 -0.002 0.009 18,000 0.263 fixed  
Terrestrial 0.004 -0.001 0.008 18,000 0.114 fixed  
sigma 0.008 0.008 0.008 15,950 

 
residual 

Realm - 
fluctuations 
σ 

Terrestrial 0.022 0.020 0.024 16,584 0.0001 fixed 

 
Marine 0.028 0.026 0.030 21,131 0.0001 fixed  
Freshwater 0.028 0.025 0.030 17,579 0.0001 fixed 
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sigma 0.002 0.002 0.002 15,086 

 
residual 

Realm - 
fluctuations 
CI 

Freshwater 0.144 0.136 0.152 18,000 0.0001 fixed 

 
Marine 0.148 0.140 0.155 18,000 0.0001 fixed  
Terrestrial 0.118 0.111 0.124 18,000 0.0001 fixed  
sigma 0.012 0.011 0.012 17,555 

 
residual 

Realm - 
fluctuations 
CI weighted 

Terrestrial 0.130 0.122 0.138 18,000 0.0001 fixed 

 
Marine 0.169 0.159 0.180 18,000 0.0001 fixed  
Freshwater 0.170 0.159 0.181 16,896 0.0001 fixed  
sigma 0.011 0.010 0.011 18,000 

 
residual 

Realm - 
fluctuations 
SE 

Freshwater 0.135 0.126 0.143 18,000 0.0001 fixed 

 
Marine 0.139 0.131 0.148 18,000 0.0001 fixed  
Terrestrial 0.109 0.102 0.115 18,440 0.0001 fixed  
sigma 0.012 0.011 0.012 18,000 

 
residual 

Realm - 
fluctuations 
SD 

Freshwater 0.563 0.557 0.569 18,000 0.0001 fixed 

 
Marine 0.568 0.562 0.573 18,000 0.0001 fixed  
Terrestrial 0.547 0.542 0.552 18,000 0.0001 fixed  
sigma 0.008 0.008 0.008 16,850 

 
residual 

Biome - μ Boreal 
forests/taiga 

0.002 -0.002 0.006 18,664 0.235 fixed 
 

Deserts and 
xeric 
shrublands 

-0.006 -0.023 0.012 18,000 0.526 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

-0.009 -0.019 0.0004 18,000 0.061 fixed 

 
Large lakes 0.003 -0.005 0.012 18,000 0.405 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.005 -0.003 0.014 18,000 0.188 fixed 

 
Montane 
freshwaters 

0.011 -0.028 0.051 18,000 0.574 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.030 0.010 0.050 18,000 0.003 fixed 

 
Polar 
freshwaters 

0.004 -0.003 0.012 18,000 0.258 fixed 
 

Polar seas -0.011 -0.035 0.014 18,000 0.397 fixed  
Temperate 
forests 

0.002 -0.002 0.005 18,000 0.318 fixed 
 

Temperate 
wetlands 
and rivers 

0.002 -0.002 0.007 18,000 0.226 fixed 

 
Temperate 
grasslands 
savannas 

-0.004 -0.011 0.003 18,000 0.247 fixed 
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and 
shrublands  
Tropical 
wetlands 
and rivers 

0.002 -0.007 0.011 18,000 0.725 fixed 

 
Tropical and 
subtropical 
forests 

0.018 0.009 0.027 18,000 0.0001 fixed 

 
Tropical 
coral 

0.024 0.012 0.037 18,000 0.0001 fixed 
 

Tundra 0.007 -0.002 0.015 19,239 0.111 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

-0.002 -0.017 0.013 18,000 0.831 fixed 

 
sigma 0.003 0.003 0.003 15,790 

 
residual 

Biome - 
slope 

Boreal 
forests/taiga 

0.002 -0.004 0.007 18,000 0.523 fixed 
 

Deserts and 
xeric 
shrublands 

-0.027 -0.050 -0.002 18,000 0.031 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

-0.017 -0.030 -0.004 18,000 0.014 fixed 

 
Large lakes 0.002 -0.010 0.015 18,781 0.792 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.010 -0.002 0.023 17,610 0.109 fixed 

 
Montane 
freshwaters 

0.021 -0.034 0.074 18,000 0.445 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.021 -0.005 0.046 17,224 0.115 fixed 

 
Polar 
freshwaters 

0.003 -0.009 0.014 18,000 0.660 fixed 
 

Polar seas -0.016 -0.046 0.015 17,196 0.320 fixed  
Temperate 
forests 

0.003 -0.001 0.008 17,408 0.165 fixed 
 

Temperate 
wetlands 
and rivers 

0.004 -0.001 0.010 18,000 0.123 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

-0.001 -0.010 0.007 18,000 0.780 fixed 

 
Tropical 
wetlands 
and rivers 

0.003 -0.011 0.016 18,000 0.713 fixed 

 
Tropical and 
subtropical 
forests 

0.025 0.012 0.038 17,560 0.0002 fixed 

 
Tropical 
coral 

0.036 0.019 0.052 18,000 0.0001 fixed 
 

Tundra 0.013 -0.0003 0.026 17,563 0.048 fixed 
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Xeric 
freshwaters 
and 
endorheic 
basins 

0.014 -0.010 0.038 18,257 0.265 fixed 

 
sigma 0.003 0.003 0.003 13,753 

 
residual 

Biome - 
weighted 

Boreal 
forests/taiga 

0.003 -0.003 0.010 18,000 0.334 fixed 
 

Deserts and 
xeric 
shrublands 

-0.019 -0.049 0.011 18,000 0.208 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

-0.004 -0.021 0.013 18,000 0.635 fixed 

 
Large lakes 0.007 -0.007 0.021 18,000 0.336 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.006 -0.008 0.020 19,170 0.402 fixed 

 
Montane 
freshwaters 

0.023 -0.044 0.094 18,000 0.521 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.037 0.003 0.071 20,405 0.033 fixed 

 
Polar 
freshwaters 

0.012 -0.001 0.025 18,000 0.069 fixed 
 

Polar seas -0.023 -0.066 0.018 18,000 0.292 fixed  
Temperate 
forests 

0.003 -0.003 0.009 18,000 0.265 fixed 
 

Temperate 
wetlands 
and rivers 

0.005 -0.002 0.012 17,585 0.169 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

-0.008 -0.019 0.004 18,000 0.161 fixed 

 
Tropical 
wetlands 
and rivers 

0.006 -0.010 0.022 18,000 0.473 fixed 

 
Tropical and 
subtropical 
forests 

0.014 -0.001 0.029 18,000 0.068 fixed 

 
Tropical 
coral 

0.039 0.018 0.060 18,000 0.0003 fixed 
 

Tundra 0.013 -0.001 0.027 18,000 0.071 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

-0.021 -0.048 0.003 18,000 0.099 fixed 

 
sigma 0.008 0.007 0.008 16,533 

 
residual 

Biome - 
fluctuations 
σ 

Boreal 
forests/taiga 

0.018 0.015 0.021 18,000 0.0001 fixed 

 
Deserts and 
xeric 
shrublands 

0.044 0.031 0.057 18,000 0.0001 fixed 
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Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

0.044 0.037 0.051 18,000 0.0001 fixed 

 
Large lakes 0.024 0.018 0.030 18,000 0.0001 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.022 0.016 0.028 18,000 0.0001 fixed 

 
Montane 
freshwaters 

0.047 0.018 0.075 18,000 0.001 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.031 0.016 0.046 18,000 0.0001 fixed 

 
Polar 
freshwaters 

0.027 0.021 0.033 17,652 0.0001 fixed 
 

Polar seas 0.037 0.019 0.055 17,689 0.0001 fixed  
Temperate 
forests 

0.019 0.017 0.022 17,789 0.0001 fixed 
 

Temperate 
wetlands 
and rivers 

0.024 0.022 0.027 18,000 0.0001 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

0.015 0.010 0.020 18,000 0.0001 fixed 

 
Tropical 
wetlands 
and rivers 

0.046 0.039 0.054 18,000 0.0001 fixed 

 
Tropical and 
subtropical 
forests 

0.041 0.035 0.048 17,508 0.0001 fixed 

 
Tropical 
coral 

0.029 0.020 0.038 18,000 0.0001 fixed 
 

Tundra 0.020 0.014 0.026 18,497 0.0001 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

0.039 0.028 0.052 18,845 0.0001 fixed 

 
sigma 0.002 0.002 0.002 14,440 

 
residual 

Biome - 
fluctuations 
CI 

Boreal 
forests/taiga 

0.091 0.083 0.100 18,000 0.0001 fixed 

 
Deserts and 
xeric 
shrublands 

0.210 0.173 0.247 17,389 0.0001 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

0.200 0.178 0.222 18,000 0.0001 fixed 

 
Large lakes 0.112 0.095 0.130 18,000 0.0001 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.132 0.115 0.150 18,000 0.0001 fixed 
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Montane 
freshwaters 

0.197 0.108 0.286 18,000 0.0001 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.163 0.121 0.206 18,000 0.0001 fixed 

 
Polar 
freshwaters 

0.147 0.132 0.164 18,000 0.0001 fixed 
 

Polar seas 0.146 0.096 0.204 17,894 0.0001 fixed  
Temperate 
forests 

0.099 0.091 0.107 18,000 0.0001 fixed 
 

Temperate 
wetlands 
and rivers 

0.132 0.123 0.141 18,000 0.0001 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

0.092 0.077 0.106 18,000 0.0001 fixed 

 
Tropical 
wetlands 
and rivers 

0.219 0.198 0.239 18,000 0.0001 fixed 

 
Tropical and 
subtropical 
forests 

0.197 0.178 0.215 18,405 0.0001 fixed 

 
Tropical 
coral 

0.161 0.135 0.189 18,000 0.0001 fixed 
 

Tundra 0.107 0.090 0.124 18,338 0.0001 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

0.177 0.146 0.211 18,000 0.0001 fixed 

 
sigma 0.011 0.011 0.011 17,482 

 
residual 

Biome - 
fluctuations 
CI weighted 

Boreal 
forests/taiga 

0.104 0.092 0.115 18,000 0.0001 fixed 

 
Deserts and 
xeric 
shrublands 

0.239 0.190 0.288 18,524 0.0001 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

0.248 0.220 0.274 18,431 0.0001 fixed 

 
Large lakes 0.134 0.111 0.158 16,663 0.0001 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.162 0.137 0.187 18,000 0.0001 fixed 

 
Montane 
freshwaters 

0.276 0.161 0.393 18,000 0.0001 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.173 0.121 0.222 17,341 0.0001 fixed 

 
Polar 
freshwaters 

0.172 0.149 0.193 18,386 0.0001 fixed 
 

Polar seas 0.169 0.103 0.237 18,368 0.0001 fixed  
Temperate 
forests 

0.107 0.097 0.116 18,000 0.0001 fixed 
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Temperate 
wetlands 
and rivers 

0.156 0.144 0.169 18,000 0.0001 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

0.107 0.090 0.124 18,000 0.0001 fixed 

 
Tropical 
wetlands 
and rivers 

0.239 0.211 0.267 18,000 0.0001 fixed 

 
Tropical and 
subtropical 
forests 

0.216 0.190 0.242 18,000 0.0001 fixed 

 
Tropical 
coral 

0.183 0.147 0.218 18,000 0.0001 fixed 
 

Tundra 0.114 0.091 0.137 18,000 0.0001 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

0.230 0.186 0.273 18,000 0.0001 fixed 

 
sigma 0.010 0.010 0.011 16,732 

 
residual 

Biome - 
fluctuations 
SE 

Boreal 
forests/taiga 

0.086 0.077 0.096 18,000 0.0001 fixed 

 
Deserts and 
xeric 
shrublands 

0.204 0.162 0.242 18,000 0.0001 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

0.126 0.102 0.150 18,000 0.0001 fixed 

 
Large lakes 0.095 0.076 0.114 17,101 0.0001 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.149 0.131 0.167 17,283 0.0001 fixed 

 
Montane 
freshwaters 

0.184 0.091 0.283 18,000 0.0002 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.110 0.065 0.156 18,000 0.0001 fixed 

 
Polar 
freshwaters 

0.152 0.134 0.169 18,000 0.0001 fixed 
 

Polar seas 0.076 0.019 0.137 18,000 0.011 fixed  
Temperate 
forests 

0.094 0.086 0.103 18,000 0.0001 fixed 
 

Temperate 
wetlands 
and rivers 

0.123 0.113 0.133 18,000 0.0001 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

0.096 0.080 0.111 18,000 0.0001 fixed 

 
Tropical 
wetlands 
and rivers 

0.229 0.207 0.251 18,000 0.0001 fixed 
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Tropical and 
subtropical 
forests 

0.154 0.133 0.174 18,000 0.0001 fixed 

 
Tropical 
coral 

0.187 0.158 0.218 18,580 0.0001 fixed 
 

Tundra 0.111 0.092 0.129 18,663 0.0001 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

0.129 0.095 0.163 18,000 0.0001 fixed 

 
sigma 0.012 0.011 0.012 17,110 

 
residual 

Biome - 
fluctuations 
SD 

Boreal 
forests/taiga 

0.523 0.517 0.530 18,000 0.0001 fixed 

 
Deserts and 
xeric 
shrublands 

0.585 0.556 0.614 18,000 0.0001 fixed 

 
Trop. and 
subtrop. 
grasslands 
savannas 
and 
shrublands 

0.602 0.585 0.619 18,000 0.0001 fixed 

 
Large lakes 0.540 0.527 0.555 18,000 0.0001 fixed  
Mediterrane
an forests 
woodlands 
and scrub 

0.574 0.560 0.587 18,300 0.0001 fixed 

 
Montane 
freshwaters 

0.605 0.537 0.671 18,000 0.0001 fixed 
 

Montane 
grasslands 
and 
shrublands 

0.583 0.549 0.616 18,000 0.0001 fixed 

 
Polar 
freshwaters 

0.570 0.557 0.582 18,000 0.0001 fixed 
 

Polar seas 0.548 0.504 0.588 18,000 0.0001 fixed  
Temperate 
forests 

0.536 0.531 0.542 18,000 0.0001 fixed 
 

Temperate 
wetlands 
and rivers 

0.557 0.551 0.564 18,000 0.0001 fixed 

 
Temperate 
grasslands 
savannas 
and 
shrublands 

0.526 0.515 0.537 18,000 0.0001 fixed 

 
Tropical 
wetlands 
and rivers 

0.608 0.593 0.625 18,000 0.0001 fixed 

 
Tropical and 
subtropical 
forests 

0.614 0.600 0.629 18,000 0.0001 fixed 

 
Tropical 
coral 

0.609 0.588 0.629 18,264 0.0001 fixed 
 

Tundra 0.539 0.525 0.553 18,000 0.0001 fixed  
Xeric 
freshwaters 
and 
endorheic 
basins 

0.556 0.530 0.580 18,000 0.0001 fixed 
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sigma 0.007 0.007 0.008 17,425 

 
residual 

Taxa - μ Actinopteryg
ii 

0.00004 -0.004 0.004 18,851 0.986 fixed 
 

Amphibia -0.012 -0.022 -0.002 17,369 0.027 fixed  
Aves 0.003 0.001 0.006 18,000 0.007 fixed  
Elasmobran
chii 

-0.010 -0.022 0.002 17,095 0.097 fixed 
 

Mammalia 0.010 0.005 0.015 19,689 0.0001 fixed  
Reptilia 0.010 0.001 0.020 18,000 0.029 fixed  
sigma 0.003 0.003 0.003 16,346 

 
residual 

Taxa - 
weighted 

Actinopteryg
ii 

-0.001 -0.007 0.004 18,000 0.744 fixed 
 

Amphibia -0.016 -0.032 -0.001 18,000 0.046 fixed  
Aves 0.005 0.002 0.008 18,000 0.003 fixed  
Elasmobran
chii 

-0.017 -0.035 0.002 18,000 0.077 fixed 
 

Mammalia 0.011 0.004 0.017 18,490 0.001 fixed  
Reptilia 0.004 -0.010 0.018 18,000 0.578 fixed  
sigma 0.003 0.003 0.003 14,129 

 
residual 

Taxa - 
slope 

Actinopteryg
ii 

-0.001 -0.008 0.005 18,000 0.664 fixed 
 

Amphibia -0.020 -0.037 -0.002 16,874 0.026 fixed  
Aves 0.006 0.001 0.010 18,000 0.009 fixed  
Elasmobran
chii 

-0.018 -0.039 0.002 17,613 0.083 fixed 
 

Mammalia 0.011 0.003 0.020 18,000 0.012 fixed  
Reptilia 0.022 0.006 0.038 18,000 0.007 fixed  
sigma 0.008 0.008 0.008 16,177 

 
residual 

Taxa - 
fluctuations 
σ 

Actinopteryg
ii 

0.032 0.030 0.035 17,489 0.0001 fixed 

 
Amphibia 0.040 0.033 0.047 18,000 0.0001 fixed  
Aves 0.018 0.017 0.020 18,000 0.0001 fixed  
Elasmobran
chii 

0.030 0.022 0.039 18,000 0.0001 fixed 
 

Mammalia 0.035 0.032 0.038 17,868 0.0001 fixed  
Reptilia 0.034 0.028 0.041 18,000 0.0001 fixed  
sigma 0.002 0.002 0.002 13,289 

 
residual 

Taxa - 
fluctuations 
CI 

Actinopteryg
ii 

0.163 0.155 0.171 18,000 0.0001 fixed 

 
Amphibia 0.208 0.186 0.231 18,000 0.0001 fixed  
Aves 0.094 0.089 0.099 17,127 0.0001 fixed  
Elasmobran
chii 

0.152 0.125 0.177 18,000 0.0001 fixed 
 

Mammalia 0.182 0.172 0.193 18,000 0.0001 fixed  
Reptilia 0.195 0.176 0.216 18,476 0.0001 fixed  
sigma 0.012 0.011 0.012 18,000 

 
residual 

Taxa - 
fluctuations 
CI weighted 

Actinopteryg
ii 

0.191 0.180 0.202 18,000 0.0001 fixed 

 
Amphibia 0.272 0.242 0.304 17,535 0.0001 fixed 
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Aves 0.105 0.098 0.112 18,000 0.0001 fixed  
Elasmobran
chii 

0.197 0.160 0.232 18,434 0.0001 fixed 
 

Mammalia 0.212 0.198 0.226 19,200 0.0001 fixed  
Reptilia 0.229 0.201 0.257 18,000 0.0001 fixed  
sigma 0.011 0.011 0.012 17,175 

 
residual 

Taxa - 
fluctuations 
SE 

Actinopteryg
ii 

0.159 0.150 0.168 18,000 0.0001 fixed 

 
Amphibia 0.224 0.199 0.247 17,493 0.0001 fixed  
Aves 0.080 0.074 0.086 18,000 0.0001 fixed  
Elasmobran
chii 

0.151 0.124 0.179 18,000 0.0001 fixed 
 

Mammalia 0.157 0.145 0.169 18,000 0.0001 fixed  
Reptilia 0.233 0.211 0.255 18,000 0.0001 fixed  
sigma 0.011 0.011 0.012 18,000 

 
residual 

Taxa - 
fluctuations 
SD 

Actinopteryg
ii 

0.572 0.566 0.579 18,000 0.0001 fixed 

 
Amphibia 0.612 0.596 0.630 18,000 0.0001 fixed  
Aves 0.530 0.526 0.534 18,000 0.0001 fixed  
Elasmobran
chii 

0.563 0.542 0.582 18,000 0.0001 fixed 
 

Mammalia 0.603 0.595 0.611 18,000 0.0001 fixed  
Reptilia 0.610 0.595 0.625 18,000 0.0001 fixed  
sigma 0.008 0.007 0.008 18,000 

 
residual 

Number of 
time points 
- μ 

points 0.00002 -0.00004 0.0001 18,000 0.464 fixed 

 
sigma 0.003 0.003 0.003 16,697 

 
residual 

Number of 
time points 
– σ 
(fluctuation
s) 

points 0.0002 0.0001 0.0003 16,224 0.0001 fixed 

 
sigma 0.002 0.002 0.002 16,816 

 
residual 

Duration duration 0.0001 0.00003 0.0001 18,398 0.001 fixed 
 sigma 0.003 0.003 0.004 18,000  residual 
Duration * 
System 
interaction 

Freshwater 0.006 0.002 0.010 17,386 0.008 fixed 

 Marine 0.009 0.004 0.014 18,000 0.001 fixed 
 Terrestrial 0.009 0.006 0.013 18,000 0.0001 fixed 
 duration -0.0001 -0.0002 0.0001 18,025 0.532 fixed 

 Marine:durat
ion -0.0002 -0.001 0.0001 18,000 0.162 fixed 

 Terrestrial:d
uration -0.0002 -0.0004 0.00004 17,941 0.113 fixed 

 sigma 0.003 0.003 0.004 18,062  residual 
Duration * 
Taxa 
interaction 

Actinopteryg
ii 0.0005 -0.006 0.007 18,000 0.890 fixed 

 Amphibia -0.019 -0.039 0.002 18,000 0.077 fixed 
 Aves 0.010 0.006 0.014 18,000 0.0001 fixed 
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 Mammalia 0.011 0.003 0.019 18,000 0.009 fixed 
 Reptilia 0.023 0.010 0.038 18,000 0.001 fixed 
 duration -0.00003 -0.0004 0.0003 18,000 0.879 fixed 

 Amphibia:du
ration 0.001 -0.001 0.002 18,000 0.444 fixed 

 Aves:duratio
n -0.0002 -0.001 0.0001 18,000 0.242 fixed 

 Mammalia:d
uration -0.00001 -0.001 0.001 18,000 0.956 fixed 

 Reptilia:dura
tion -0.001 -0.002 -0.0001 18,000 0.026 fixed 

 sigma 0.003 0.003 0.003 16,297  residual 
Sampling 
units - μ (Intercept) -0.0001 -0.003 0.003 18,000 0.918 fixed 

 Individuals 
(1167) 0.006 0.002 0.010 18,000 0.003 fixed 

 Pairs (505) 0.015 0.009 0.020 18,000 0.0001 fixed 
 Nests (224) 0.015 0.007 0.023 18,000 0.0002 fixed 

 
Population 
estimate 
(97) 

0.017 0.007 0.027 18,000 0.001 fixed 

 sigma 0.002 0.002 0.002 15,983  residual 
Geographic 
range 
birds/mam
mals - μ 

(Intercept) 0.012 -0.002 0.026 18,000 0.082 fixed 

 
log(Geograp
hic range) 

-0.0005 -0.001 0.0004 18,000 0.278 fixed 
 

sigma 0.003 0.003 0.003 17,575 
 

residual 
Geographic 
range 
birds/mam
mals - μ * 
taxa 
interaction 

(Intercept) 0.068 0.031 0.107 18,000 0.0002 fixed 

 
log(Geograp
hic range) 

-0.004 -0.007 -0.002 18,000 0.001 fixed 
 

Aves -0.076 -0.119 -0.031 18,000 0.001 fixed  
log(Geograp
hic 
range):Aves 

0.005 0.002 0.008 18,000 0.001 fixed 

 
sigma 0.003 0.003 0.003 16,888 

 
residual 

Geographic 
range 
birds/mam
mals - 
weighted 

(Intercept) 0.013 -0.011 0.038 18,000 0.295 fixed 

 
log(Geograp
hic range) 

-0.0004 -0.002 0.001 18,000 0.564 fixed 
 

sigma 0.003 0.003 0.003 16,791 
 

residual 
Geographic 
range 
birds/mam
mals - 
slope 

(Intercept) 0.010 -0.020 0.041 18,433 0.515 fixed 

 
log.range -0.0002 -0.002 0.002 18,408 0.813 fixed  
sigma 0.008 0.007 0.008 16,986 

 
residual 

Geographic 
range 

(Intercept) 0.046 0.032 0.060 18,000 0.0001 fixed 
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birds/mam
mals - 
fluctuations 
σ  

log(Geograp
hic range) 

-0.001 -0.002 -0.001 18,000 0.001 fixed 
 

sigma 0.002 0.002 0.002 15,577 
 

residual 
Geographic 
range 
birds/mam
mals - 
fluctuations 
CI 

(Intercept) 0.180 0.137 0.226 18,000 0.0001 fixed 

 
log(Geograp
hic range) 

-0.004 -0.007 -0.001 18,769 0.003 fixed 
 

sigma 0.011 0.011 0.011 18,000 
 

residual 
Geographic 
range 
birds/mam
mals - 
fluctuations 
CI weighted 

(Intercept) 0.173 0.117 0.233 18,000 0.0001 fixed 

 
log(Geograp
hic range) 

-0.003 -0.006 0.001 18,000 0.122 fixed 
 

sigma 0.011 0.010 0.011 18,000 
 

residual 
Geographic 
range 
birds/mam
mals - 
fluctuations 
SE 

(Intercept) 0.082 0.037 0.126 17,605 0.0001 fixed 

 
log(Geograp
hic range) 

0.001 -0.002 0.004 17,534 0.512 fixed 
 

sigma 0.011 0.011 0.011 18,000 
 

residual 
Geographic 
range 
birds/mam
mals - 
fluctuations 
SD 

(Intercept) 0.605 0.571 0.638 17,938 0.0001 fixed 

 
log(Geograp
hic range) 

-0.004 -0.006 -0.002 17,306 0.0004 fixed 
 

sigma 0.008 0.007 0.008 18,000 
 

residual 
Mean 
population 
size - μ 

(Intercept) 0.001 -0.003 0.005 18,000 0.794 fixed 

 
log(Mean 
population 
size) 

0.001 0.001 0.002 18,000 0.0004 fixed 

 
sigma 0.004 0.004 0.004 15,837 

 
residual 

Mean 
population 
size - μ * 
taxa 
interaction 

(Intercept) 0.007 -0.003 0.018 18,000 0.161 fixed 

 
log(Mean 
population 
size) 

-0.001 -0.003 0.001 18,000 0.197 fixed 

 
Amphibia -0.006 -0.027 0.017 18,000 0.615 fixed  
Aves -0.009 -0.021 0.003 18,000 0.133 fixed  
Elasmobran
chii 

-0.025 -0.050 0.0004 18,000 0.055 fixed 
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Mammalia -0.009 -0.022 0.006 18,000 0.211 fixed  
Reptilia 0.007 -0.011 0.025 18,000 0.434 fixed  
log(Mean 
population 
size):Amphi
bia 

-0.003 -0.008 0.002 19,145 0.215 fixed 

 
log(Mean 
population 
size):Aves 

0.003 0.001 0.005 18,000 0.003 fixed 

 
log(Mean 
population 
size):Elasm
obranchii 

0.005 -0.001 0.012 18,428 0.127 fixed 

 
log(Mean 
population 
size):Mamm
alia 

0.004 0.001 0.006 18,000 0.002 fixed 

 
log(Mean 
population 
size):Reptili
a 

0.001 -0.003 0.004 18,000 0.772 fixed 

 
sigma 0.004 0.004 0.004 16,486 

 
residual 

Mean 
population 
size - 
weighted 

(Intercept) 0.002 -0.005 0.008 18,000 0.611 fixed 

 
log(Mean 
population 
size) 

0.001 0.0003 0.002 18,000 0.014 fixed 

 
sigma 0.005 0.004 0.005 13,784 

 
residual 

Mean 
population 
size - slope 

(Intercept) -0.0002 -0.007 0.006 18,000 0.946 fixed 

 
log(Mean 
population 
size) 

0.002 0.001 0.003 18,000 0.0002 fixed 

 
sigma 0.011 0.010 0.012 15,825 

 
residual 

Mean 
population 
size - 
fluctuations 
σ 

(Intercept) 0.034 0.032 0.037 18,000 0.0001 fixed 

 
log(Mean 
population 
size) 

-0.001 -0.001 -0.0002 18,000 0.003 fixed 

 
sigma 0.002 0.002 0.002 6,763 

 
residual 

Mean 
population 
size - 
fluctuations 
CI 

(Intercept) 0.222 0.212 0.232 18,000 0.0001 fixed 

 
log(Mean 
population 
size) 

-0.004 -0.006 -0.003 18,000 0.0001 fixed 

 
sigma 0.026 0.025 0.027 14,178 

 
residual 

Mean 
population 
size - 
fluctuations 
CI weighted 

(Intercept) 0.262 0.249 0.275 18,000 0.0001 fixed 
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log(Mean 
population 
size) 

-0.007 -0.009 -0.004 18,000 0.0001 fixed 

 
sigma 0.026 0.025 0.028 13,162 

 
residual 

Mean 
population 
size - 
fluctuations 
SE 

(Intercept) 0.228 0.218 0.238 18,000 0.0001 fixed 

 
log(Mean 
population 
size) 

-0.010 -0.012 -0.008 18,000 0.0001 fixed 

 
sigma 0.023 0.022 0.024 15,480 

 
residual 

Mean 
population 
size - 
fluctuations 
SD 

(Intercept) 0.001 -0.001 0.003 17,324 0.454 fixed 

 
log(Mean 
population 
size) 

0.00000 -0.00001 0.00002 18,000 0.556 fixed 

 
sigma 0.00000 0.00000 0.00000 18,000 

 
residual 

Habitat 
specificity - 
μ 

(Intercept) 0.002 -0.001 0.006 18,000 0.176 fixed 

 
Habitat 
specificity 

0.0002 -0.0002 0.001 18,000 0.321 fixed 
 

sigma 0.003 0.003 0.003 15,647 
 

residual 
Habitat 
specificity - 
μ * taxa 
interaction 

(Intercept) 0.003 -0.004 0.011 18,000 0.443 fixed 

 
Habitat 
specificity 

-0.0004 -0.002 0.001 18,187 0.538 fixed 
 

Amphibia -0.015 -0.035 0.004 17,354 0.130 fixed  
Aves -0.002 -0.011 0.007 18,000 0.652 fixed  
Cephalaspid
omorphi 

0.016 -0.103 0.132 18,000 0.796 fixed 
 

Elasmobran
chii 

-0.027 -0.055 0.001 17,291 0.059 fixed 
 

Holocephali -0.105 -0.224 0.013 18,000 0.082 fixed  
Mammalia 0.008 -0.003 0.018 18,000 0.168 fixed  
Myxini -0.063 -0.145 0.022 18,000 0.146 fixed  
Reptilia 0.015 -0.007 0.036 18,000 0.176 fixed  
Habitat 
specificity:A
mphibia 

0.0003 -0.002 0.002 17,509 0.753 fixed 

 
Habitat 
specificity:A
ves 

0.001 -0.001 0.002 18,000 0.261 fixed 

 
Habitat 
specificity:El
asmobranch
ii 

0.005 -0.003 0.013 18,000 0.264 fixed 

 
Habitat 
specificity:M
ammalia 

0.001 -0.001 0.002 19,769 0.494 fixed 

 
Habitat 
specificity:R
eptilia 

-0.001 -0.004 0.002 18,000 0.503 fixed 
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sigma 0.003 0.003 0.003 16,057 

 
residual 

Habitat 
specificity - 
weighted 

(Intercept) 0.002 -0.003 0.006 18,000 0.443 fixed 

 
Habitat 
specificity 

0.0004 -0.0001 0.001 18,000 0.128 fixed 
 

sigma 0.003 0.003 0.003 13,856 
 

residual 
Habitat 
specificity - 
slope 

(Intercept) 0.003 -0.003 0.009 18,000 0.317 fixed 

 
Habitat 
specificity 

0.0003 -0.0003 0.001 18,000 0.321 fixed 
 

sigma 0.008 0.008 0.009 16,422 
 

residual 
Habitat 
specificity - 
fluctuations 
σ 

(Intercept) 0.023 0.021 0.025 16,596 0.0001 fixed 

 
Habitat 
specificity 

0.0002 -0.0001 0.0005 17,782 0.123 fixed 
 

sigma 0.002 0.002 0.002 14,047 
 

residual 
Habitat 
specificity - 
fluctuations 
CI 

(Intercept) 0.126 0.118 0.134 18,000 0.0001 fixed 

 
Habitat 
specificity 

0.001 -0.0002 0.002 18,000 0.117 fixed 
 

sigma 0.012 0.011 0.012 18,411 
 

residual 
Habitat 
specificity - 
fluctuations 
CI weighted 

(Intercept) 0.140 0.129 0.151 18,000 0.0001 fixed 

 
Habitat 
specificity 

0.001 -0.0001 0.002 18,000 0.065 fixed 
 

sigma 0.011 0.011 0.012 18,131 
 

residual 
Habitat 
specificity - 
fluctuations 
SE 

(Intercept) 0.117 0.108 0.126 18,000 0.0001 fixed 

 
Habitat 
specificity 

0.001 -0.0002 0.002 18,000 0.138 fixed 
 

sigma 0.012 0.012 0.012 17,484 
 

residual 
Habitat 
specificity - 
fluctuations 
SD 

(Intercept) 0.555 0.549 0.561 18,000 0.0001 fixed 

 
Habitat 
specificity 

0.0003 -0.0004 0.001 16,414 0.349 fixed 
 

sigma 0.008 0.008 0.008 18,000 
 

residual 
IUCN Red 
List 
Categories 
- μ 

Least 
concern 

0.005 0.003 0.008 18,000 0.0001 fixed 

 
Near 
threatened 

-0.004 -0.012 0.004 18,000 0.319 fixed 
 

Vulnerable 0.003 -0.005 0.010 18,000 0.427 fixed  
Endangered -0.004 -0.013 0.006 18,000 0.452 fixed  
Critically 
endangered 

-0.007 -0.020 0.005 18,541 0.259 fixed 
 

sigma 0.003 0.003 0.003 15,497 
 

residual 
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IUCN Red 
List 
Categories 
- weighted 

Least 
concern 

0.007 0.004 0.010 18,000 0.0001 fixed 

 
Near 
threatened 

0.001 -0.010 0.011 18,241 0.852 fixed 
 

Vulnerable 0.003 -0.008 0.013 18,000 0.626 fixed  
Endangered -0.007 -0.020 0.006 18,000 0.291 fixed  
Critically 
endangered 

-0.014 -0.032 0.004 18,000 0.114 fixed 
 

sigma 0.003 0.003 0.003 14,285 
 

residual 
IUCN Red 
List 
Categories 
- slope 

Least 
concern 

0.009 0.005 0.012 18,905 0.0001 fixed 

 
Near 
threatened 

-0.011 -0.024 0.003 18,000 0.121 fixed 
 

Vulnerable 0.003 -0.010 0.016 16,528 0.684 fixed  
Endangered -0.007 -0.023 0.009 18,000 0.423 fixed  
Critically 
endangered 

-0.013 -0.034 0.009 18,000 0.254 fixed 
 

sigma 0.008 0.008 0.009 15,931 
 

residual 
IUCN Red 
List 
Categories 
- 
fluctuations 
σ 

Least 
concern 

0.023 0.022 0.025 16,756 0.0001 fixed 

 
Near 
threatened 

0.028 0.023 0.033 17,565 0.0001 fixed 
 

Vulnerable 0.027 0.022 0.032 20,081 0.0001 fixed  
Endangered 0.032 0.026 0.039 18,000 0.0001 fixed  
Critically 
endangered 

0.039 0.031 0.048 18,000 0.0001 fixed 
 

sigma 0.002 0.002 0.002 13,906 
 

residual 
IUCN Red 
List 
Categories 
- 
fluctuations 
CI 

Least 
concern 

0.124 0.118 0.129 18,000 0.0001 fixed 

 
Near 
threatened 

0.152 0.134 0.171 18,000 0.0001 fixed 
 

Vulnerable 0.151 0.134 0.169 17,076 0.0001 fixed  
Endangered 0.168 0.146 0.189 20,476 0.0001 fixed  
Critically 
endangered 

0.178 0.150 0.208 18,000 0.0001 fixed 
 

sigma 0.012 0.012 0.012 17,734 
 

residual 
IUCN Red 
List 
Categories 
- 
fluctuations 
CI weighted 

Least 
concern 

0.140 0.133 0.147 18,000 0.0001 fixed 

 
Near 
threatened 

0.172 0.147 0.196 17,244 0.0001 fixed 
 

Vulnerable 0.171 0.148 0.195 18,589 0.0001 fixed  
Endangered 0.194 0.165 0.222 18,000 0.0001 fixed 
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Critically 
endangered 

0.193 0.155 0.231 18,000 0.0001 fixed 
 

sigma 0.012 0.011 0.012 17,086 
 

residual 
IUCN Red 
List 
Categories 
- 
fluctuations 
SE 

Least 
concern 

0.119 0.113 0.125 18,000 0.0001 fixed 

 
Near 
threatened 

0.135 0.114 0.156 18,000 0.0001 fixed 
 

Vulnerable 0.127 0.107 0.147 18,000 0.0001 fixed  
Endangered 0.143 0.119 0.167 18,000 0.0001 fixed  
Critically 
endangered 

0.149 0.116 0.180 17,444 0.0001 fixed 
 

sigma 0.012 0.012 0.012 18,000 
 

residual 
IUCN Red 
List 
Categories 
- 
fluctuations 
SD 

Least 
concern 

0.550 0.546 0.554 18,000 0.0001 fixed 

 
Near 
threatened 

0.575 0.561 0.589 18,000 0.0001 fixed 
 

Vulnerable 0.573 0.559 0.586 17,618 0.0001 fixed  
Endangered 0.596 0.580 0.613 18,000 0.0001 fixed  
Critically 
endangered 

0.604 0.582 0.625 17,544 0.0001 fixed 
 

sigma 0.008 0.008 0.008 17,153 
 

residual 
IUCN threat 
type - μ 

Fishing / 
harvesting 
aquatic 
resources 

0.005 -0.0005 0.010 18,000 0.085 fixed 

 
Hunting / 
trapping 
terrestrial 
animals 

0.005 -0.0003 0.010 18,000 0.068 fixed 

 
Annual / 
perennial 
non-timber 
crops 

0.005 -0.0004 0.012 18,000 0.080 fixed 

 
Intentional 
use (species 
is the target) 

0.005 -0.001 0.011 18,000 0.092 fixed 

 
Habitat 
shifting / 
alteration 

0.005 -0.001 0.011 18,000 0.098 fixed 

 
Housing / 
urban areas 

0.004 -0.002 0.011 17,916 0.210 fixed 
 

Unintentiona
l effects: 
(large scale) 
[harvest] 

0.004 -0.002 0.010 19,228 0.205 fixed 

 
Intentional 
use: 
(subsistence
/small scale) 
[harvest] 

0.005 -0.002 0.012 18,423 0.192 fixed 

 
Agricultural / 
forestry 
effluents 

0.005 -0.002 0.011 18,000 0.153 fixed 
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Intentional 
use: (large 
scale) 
[harvest] 

0.004 -0.003 0.011 17,575 0.257 fixed 

 
sigma 0.004 0.004 0.004 18,000 

 
residual 

IUCN threat 
number - μ 

(Intercept) 0.004 -0.001 0.009 18,000 0.145 fixed 
 

Number of 
threats 

0.0001 -0.0004 0.001 18,000 0.726 fixed 
 

sigma 0.004 0.004 0.004 16,084 
 

residual 
IUCN threat 
type - 
fluctuations 
σ 

Fishing / 
harvesting 
aquatic 
resources 

0.033 0.028 0.037 17,468 0.0001 fixed 

 
Hunting / 
trapping 
terrestrial 
animals 

0.033 0.029 0.038 17,547 0.0001 fixed 

 
Annual / 
perennial 
non-timber 
crops 

0.033 0.029 0.038 17,225 0.0001 fixed 

 
Intentional 
use (species 
is the target) 

0.033 0.029 0.038 18,000 0.0001 fixed 

 
Habitat 
shifting / 
alteration 

0.032 0.028 0.037 17,548 0.0001 fixed 

 
Housing / 
urban areas 

0.034 0.029 0.039 18,000 0.0001 fixed 
 

Unintentiona
l effects: 
(large scale) 
[harvest] 

0.033 0.028 0.037 17,134 0.0001 fixed 

 
Intentional 
use: 
(subsistence
/small scale) 
[harvest] 

0.033 0.028 0.038 18,000 0.0001 fixed 

 
Agricultural / 
forestry 
effluents 

0.033 0.028 0.037 17,571 0.0001 fixed 

 
Intentional 
use: (large 
scale) 
[harvest] 

0.032 0.027 0.037 18,000 0.0001 fixed 

 
sigma 0.002 0.002 0.002 18,000 

 
residual 

IUCN threat 
number - 
fluctuations 
σ 

(Intercept) 0.029 0.026 0.032 17,078 0.0001 fixed 

 
Number of 
threats 

0.0001 -0.0002 0.0004 18,000 0.475 fixed 
 

sigma 0.002 0.002 0.002 7,021 
 

residual 
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Appendix 3.23. Model outputs from UK-scale analyses. Sigma is the overall model 

residual variance. Net population change is estimated using μ values derived from 

state-space models of population abundance versus time and slopes of linear models 

of population abundance versus time. The weighted μ models included μ as a 

response variable, weighted by t, the observation error estimate derived from the 

state-space models. The fluctuation models included the process noise (σ2) values 

from state-space models, half of the 95% confidence interval around the μ value of 

population change, the standard error around the slopes of linear models of population 

abundance versus time, and the standard deviation of the raw time series data for 

each population. The process noise is a metric of population fluctuations, whereas the 

rest of the metrics show population variability. The weighted fluctuation models were 

weighted by t, the observation error estimate derived from the state-space models. 

Model name Variable Posterior 
mean 

Lower 
95% CI 

Upper 
95% CI 

Effective 
sample 
size 

pMCMC Effect 

Realm - μ Terrestrial 0.011 -0.003 0.023 18,000 0.105 fixed  
Marine 0.007 -0.006 0.020 18,000 0.297 fixed  
Freshwater 0.030 0.010 0.049 17,098 0.002 fixed  
sigma 0.003 0.003 0.004 13,565 

 
residual 

Realm - weighted Terrestrial 0.015 0.0004 0.030 18,000 0.038 fixed  
Marine 0.008 -0.008 0.024 18,000 0.303 fixed  
Freshwater 0.027 0.005 0.050 18,000 0.021 fixed  
sigma 0.003 0.002 0.004 10,568 

 
residual 

Realm - slope Freshwater 0.062 0.025 0.098 18,000 0.0003 fixed  
Marine 0.007 -0.018 0.031 18,000 0.601 fixed  
Terrestrial 0.020 -0.004 0.045 18,380 0.114 fixed  
sigma 0.011 0.009 0.012 15,525 

 
residual 

Realm - fluctuations 
σ 

Terrestrial 0.085 0.062 0.105 18,000 0.0001 fixed 
 

Marine 0.056 0.034 0.079 18,000 0.0001 fixed  
Freshwater 0.051 0.019 0.083 18,000 0.002 fixed  
sigma 0.005 0.004 0.006 16,954 

 
residual 

Realm - fluctuations 
CI 

Terrestrial 0.193 0.165 0.220 18,000 0.0001 fixed 
 

Marine 0.118 0.090 0.146 18,000 0.0001 fixed  
Freshwater 0.139 0.100 0.181 18,000 0.0001 fixed 
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sigma 0.011 0.009 0.013 15,777 

 
residual 

Realm - fluctuations 
CI weighted 

Terrestrial 0.191 0.157 0.224 18,000 0.0001 fixed 
 

Marine 0.134 0.098 0.172 18,000 0.0001 fixed  
Freshwater 0.164 0.115 0.217 18,001 0.0001 fixed  
sigma 0.010 0.007 0.012 15,014 

 
residual 

Taxa - μ Actinopterygii -0.003 -0.020 0.014 16,879 0.744 fixed  
Amphibia -0.0002 -0.051 0.052 18,000 0.995 fixed  
Aves 0.012 0.001 0.022 18,000 0.027 fixed  
Elasmobranchii 0.006 -0.045 0.056 17,998 0.811 fixed  
Mammalia 0.046 0.023 0.069 17,742 0.0001 fixed  
Reptilia 0.044 -0.018 0.108 18,000 0.181 fixed  
sigma 0.004 0.003 0.004 10,343 

 
residual 

Taxa - weighted Actinopterygii -0.010 -0.033 0.011 18,000 0.374 fixed  
Amphibia -0.002 -0.065 0.061 18,000 0.947 fixed  
Aves 0.017 0.005 0.029 18,000 0.005 fixed  
Elasmobranchii 0.002 -0.089 0.086 18,000 0.972 fixed  
Mammalia 0.043 0.015 0.069 18,000 0.002 fixed  
Reptilia 0.030 -0.039 0.103 18,000 0.404 fixed  
sigma 0.003 0.002 0.004 9,676 

 
residual 

Taxa - slope Actinopterygii -0.009 -0.042 0.024 17,082 0.593 fixed  
Amphibia 0.004 -0.095 0.111 18,000 0.931 fixed  
Aves 0.020 0.0001 0.040 18,434 0.046 fixed  
Elasmobranchii -0.014 -0.106 0.078 18,000 0.766 fixed  
Mammalia 0.099 0.053 0.145 18,000 0.0001 fixed  
Reptilia 0.069 -0.048 0.185 19,449 0.241 fixed  
sigma 0.011 0.009 0.013 14,664 

 
residual 

Taxa - fluctuations 
σ 

Actinopterygii 0.051 0.019 0.082 18,000 0.001 fixed 
 

Amphibia 0.083 -0.023 0.182 18,000 0.117 fixed  
Aves 0.073 0.053 0.091 18,000 0.0001 fixed  
Elasmobranchii 0.072 -0.010 0.154 18,000 0.083 fixed  
Mammalia 0.054 0.012 0.098 18,000 0.014 fixed  
Reptilia 0.123 0.014 0.222 18,000 0.021 fixed  
sigma 0.005 0.004 0.006 17,207 

 
residual 

Taxa - fluctuations 
CI 

Actinopterygii 0.113 0.074 0.153 18,891 0.0001 fixed 
 

Amphibia 0.230 0.107 0.358 18,000 0.0004 fixed  
Aves 0.166 0.143 0.190 18,000 0.0001 fixed  
Elasmobranchii 0.186 0.078 0.290 18,000 0.001 fixed  
Mammalia 0.150 0.095 0.204 18,761 0.0001 fixed  
Reptilia 0.275 0.146 0.410 18,000 0.0002 fixed  
sigma 0.011 0.009 0.013 15,974 

 
residual 

Taxa - fluctuations 
CI weighted 

Actinopterygii 0.138 0.088 0.190 18,000 0.0001 fixed 
 

Amphibia 0.287 0.134 0.448 18,000 0.001 fixed  
Aves 0.169 0.142 0.197 18,255 0.0001 fixed  
Elasmobranchii 0.266 0.097 0.432 17,623 0.003 fixed 
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Mammalia 0.156 0.090 0.222 18,000 0.0001 fixed  
Reptilia 0.311 0.158 0.474 18,000 0.0001 fixed  
sigma 0.009 0.007 0.012 14,900 

 
residual 

Geographic range 
(all) - μ 

(Intercept) 0.006 -0.052 0.063 18,000 0.850 fixed 
 

log(km2_range) 0.001 -0.003 0.005 18,000 0.762 fixed  
sigma 0.004 0.003 0.004 14,513 

 
residual 

Geographic range 
(all) - weighted 

(Intercept) -0.012 -0.077 0.050 18,000 0.710 fixed 
 

log.range 0.002 -0.002 0.006 18,000 0.346 fixed  
sigma 0.003 0.002 0.004 13,236 

 
residual 

Geographic range 
(all) - slope 

(Intercept) 0.009 -0.105 0.120 18,239 0.870 fixed 
 

log.range 0.001 -0.006 0.009 18,257 0.755 fixed  
sigma 0.011 0.009 0.013 16,452 

 
residual 

Geographic range 
(all) - fluctuations σ 

(Intercept) 0.004 -0.101 0.115 18,000 0.939 fixed 
 

log(km2_range) 0.005 -0.003 0.012 18,000 0.198 fixed  
sigma 0.005 0.004 0.006 18,000 

 
residual 

Geographic range 
(all) - fluctuations 
CI 

(Intercept) 0.045 -0.086 0.177 18,000 0.494 fixed 

 
log.range 0.008 -0.001 0.017 18,000 0.079 fixed  
sigma 0.011 0.009 0.013 16,713 

 
residual 

Geographic range 
(all) - fluctuations 
CI weighted 

(Intercept) 0.059 -0.104 0.221 18,000 0.472 fixed 

 
log.range 0.008 -0.003 0.019 18,000 0.162 fixed  
sigma 0.010 0.008 0.013 15,715 

 
residual 

Geographic range 
(all) - fluctuations 
SE 

(Intercept) 0.050 -0.104 0.206 18,000 0.528 fixed 

 
log.range 0.008 -0.003 0.018 18,000 0.159 fixed  
sigma 0.009 0.007 0.010 18,000 

 
residual 

Geographic range 
(all) - fluctuations 
SD 

(Intercept) 0.171 0.039 0.294 18,000 0.008 fixed 

 
log.range 0.016 0.007 0.025 18,000 0.0002 fixed  
sigma 0.017 0.014 0.020 15,395 

 
residual 

Mean population 
size - μ 

(Intercept) 0.023 0.0001 0.047 1,207 0.051 fixed 
 

log(Mean 
population size) 

-0.0004 -0.004 0.004 2,374 0.860 fixed 
 

sigma 0.006 0.005 0.008 411 
 

residual 
Mean population 
size - weighted 

(Intercept) 0.021 -0.002 0.045 852 0.066 fixed 
 

log(Mean 
population size) 

-0.0001 -0.004 0.004 1,950 0.964 fixed 
 

sigma 0.007 0.005 0.009 222 
 

residual 
Mean population 
size - slope 

(Intercept) 0.035 -0.006 0.075 1,274 0.071 fixed 
 

log(meanpop) -0.001 -0.008 0.006 6,788 0.832 fixed  
sigma 0.022 0.016 0.027 593 

 
residual 
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Mean population 
size - fluctuations σ 

(Intercept) 0.169 0.118 0.216 18,000 0.0001 fixed 
 

log(Mean 
population size) 

-0.004 -0.013 0.005 18,000 0.389 fixed 
 

sigma 0.034 0.023 0.045 200 
 

residual 
Mean population 
size - fluctuations 
CI 

(Intercept) 0.298 0.242 0.357 18,000 0.0001 fixed 

 
log(Mean 
population size) 

-0.009 -0.019 0.001 18,000 0.080 fixed 
 

sigma 0.026 0.018 0.035 11,283 
 

residual 
Mean population 
size - fluctuations 
CI weighted 

(Intercept) 0.298 0.240 0.354 18,305 0.0001 fixed 

 
log(Mean 
population size) 

-0.009 -0.019 0.001 18,000 0.077 fixed 
 

sigma 0.026 0.018 0.035 10,953 
 

residual 
Mean population 
size - fluctuations 
SE 

(Intercept) 0.354 0.293 0.411 18,000 0.0001 fixed 

 
log(meanpop) -0.024 -0.034 -0.014 18,099 0.0001 fixed  
sigma 0.014 0.009 0.018 16,950 

 
residual 

Mean population 
size - fluctuations 
SD 

(Intercept) 0.519 0.473 0.565 17,529 0.0001 fixed 

 
log(Mean 
population size) 

-0.007 -0.016 0.001 17,123 0.086 fixed 
 

sigma 0.030 0.019 0.039 83 
 

residual 
Habitat specificity - 
μ 

(Intercept) 0.007 -0.010 0.024 18,000 0.449 fixed 
 

Habitat specificity 0.001 -0.001 0.002 18,000 0.340 fixed  
sigma 0.004 0.003 0.005 13,436 

 
residual 

Habitat specificity 
(profiling) - μ 

(Intercept) 0.013 -0.005 0.030 18,000 0.173 fixed 
 

Habitat specificity -0.0002 -0.003 0.002 18,000 0.864 fixed  
sigma 0.005 0.004 0.005 8,201 

 
residual 

Habitat specificity - 
weighted 

(Intercept) 0.009 -0.012 0.030 18,441 0.381 fixed 
 

Habitat specificity 0.001 -0.001 0.003 18,000 0.424 fixed  
sigma 0.003 0.002 0.004 10,360 

 
residual 

Habitat specificity - 
slope 

(Intercept) 0.013 -0.020 0.046 17,956 0.434 fixed 
 

Habitat specificity 0.001 -0.002 0.004 17,589 0.434 fixed  
sigma 0.011 0.009 0.014 13,969 

 
residual 

Habitat specificity 
(profiling) - slope 

(Intercept) 0.015 -0.020 0.049 18,509 0.394 fixed 
 

Habitat specificity 0.0004 -0.004 0.005 17,454 0.852 fixed  
sigma 0.013 0.011 0.016 12,446 

 
residual 

Habitat specificity - 
fluctuations σ 

(Intercept) 0.055 0.027 0.085 18,000 0.0003 fixed 
 

Habitat specificity 0.002 -0.001 0.004 17,598 0.221 fixed  
sigma 0.005 0.004 0.006 17,516 

 
residual 

Habitat specificity 
(profiling) - 
fluctuations σ 

(Intercept) 0.022 0.008 0.038 18,947 0.004 fixed 
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Habitat specificity 0.002 -0.0003 0.004 18,000 0.092 fixed  
sigma 0.002 0.001 0.002 12,444 

 
residual 

Habitat specificity - 
fluctuations CI 

(Intercept) 0.138 0.101 0.176 18,800 0.0001 fixed 
 

Habitat specificity 0.003 -0.001 0.006 18,000 0.137 fixed  
sigma 0.011 0.009 0.014 15,996 

 
residual 

Habitat specificity - 
fluctuations CI 
weighted 

(Intercept) 0.146 0.098 0.192 18,046 0.0001 fixed 

 
Habitat specificity 0.003 -0.001 0.007 19,218 0.205 fixed  
sigma 0.010 0.008 0.013 15,033 

 
residual 

Habitat specificity - 
fluctuations SE 

(Intercept) 0.155 0.114 0.198 18,000 0.0001 fixed 
 

Habitat specificity 0.001 -0.003 0.004 18,000 0.772 fixed  
sigma 0.009 0.007 0.010 18,000 

 
residual 

Habitat specificity - 
fluctuations SD 

(Intercept) 0.400 0.360 0.438 17,592 0.0001 fixed 
 

Habitat specificity 0.0004 -0.003 0.004 18,000 0.844 fixed  
sigma 0.017 0.014 0.020 15,211 

 
residual 

IUCN Red List 
Categories - μ 

Least concern 0.013 0.003 0.023 17,332 0.011 fixed 
 

Near threatened 0.020 -0.014 0.053 18,436 0.259 fixed  
Vulnerable 0.014 -0.028 0.059 18,000 0.516 fixed  
Endangered -0.038 -0.186 0.114 18,000 0.621 fixed  
Critically 
endangered 

0.070 -0.024 0.166 17,353 0.148 fixed 
 

sigma 0.004 0.003 0.004 14,117 
 

residual 
IUCN Red List 
Categories - 
weighted 

Least concern 0.017 0.006 0.029 17,546 0.003 fixed 

 
Near threatened 0.025 -0.017 0.064 16,702 0.222 fixed  
Vulnerable 0.001 -0.046 0.048 18,000 0.964 fixed  
Endangered -0.038 -0.181 0.102 18,000 0.598 fixed  
Critically 
endangered 

0.044 -0.200 0.283 16,964 0.713 fixed 
 

sigma 0.003 0.002 0.004 10,497 
 

residual 
IUCN Red List 
Categories - slope 

Least concern 0.026 0.007 0.046 18,000 0.009 fixed 
 

Near threatened 0.016 -0.053 0.079 18,000 0.635 fixed  
Vulnerable 0.017 -0.069 0.102 18,000 0.689 fixed  
Endangered -0.011 -0.289 0.275 18,091 0.934 fixed  
Critically 
endangered 

0.053 -0.129 0.235 18,475 0.566 fixed 
 

sigma 0.011 0.009 0.013 15,903 
 

residual 
IUCN Red List 
Categories - 
fluctuations σ 

Least concern 0.073 0.056 0.090 19,089 0.0001 fixed 

 
Near threatened 0.052 -0.012 0.113 18,000 0.099 fixed  
Vulnerable 0.061 -0.018 0.141 18,461 0.139 fixed  
Endangered 0.173 -0.072 0.417 18,000 0.165 fixed  
Critically 
endangered 

0.003 -0.159 0.166 18,000 0.976 fixed 
 

sigma 0.005 0.004 0.006 17,270 
 

residual 
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IUCN Red List 
Categories - 
fluctuations CI 

Least concern 0.165 0.144 0.187 18,000 0.0001 fixed 

 
Near threatened 0.134 0.057 0.211 18,000 0.001 fixed  
Vulnerable 0.140 0.041 0.240 18,000 0.005 fixed  
Endangered 0.237 -0.089 0.541 18,433 0.140 fixed  
Critically 
endangered 

0.105 -0.103 0.314 17,573 0.321 fixed 
 

sigma 0.011 0.009 0.013 16,778 
 

residual 
IUCN Red List 
Categories - 
fluctuations CI 
weighted 

Least concern 0.175 0.148 0.201 18,000 0.0001 fixed 

 
Near threatened 0.166 0.071 0.263 18,000 0.001 fixed  
Vulnerable 0.148 0.034 0.264 18,000 0.013 fixed  
Endangered 0.236 -0.100 0.568 18,000 0.176 fixed  
Critically 
endangered 

0.070 -0.256 0.420 18,493 0.690 fixed 
 

sigma 0.010 0.008 0.012 15,655 
 

residual 
IUCN Red List 
Categories - 
fluctuations SE 

Least concern 0.165 0.141 0.190 18,376 0.0001 fixed 

 
Near threatened 0.134 0.048 0.227 14,776 0.004 fixed  
Vulnerable 0.113 -0.002 0.228 17,971 0.051 fixed  
Endangered 0.071 -0.281 0.409 18,000 0.692 fixed  
Critically 
endangered 

0.079 -0.156 0.315 18,000 0.516 fixed 
 

sigma 0.009 0.007 0.010 18,000 
 

residual 
IUCN Red List 
Categories - 
fluctuations SD 

Least concern 0.408 0.386 0.429 18,770 0.0001 fixed 

 
Near threatened 0.358 0.287 0.432 18,000 0.0001 fixed  
Vulnerable 0.319 0.223 0.418 18,000 0.0001 fixed  
Endangered 0.243 -0.085 0.586 18,000 0.157 fixed  
Critically 
endangered 

0.331 0.129 0.536 18,000 0.002 fixed 
 

sigma 0.016 0.015 0.016 18,000 
 

residual 
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Appendix 3.24. Phylogeny model outputs. To account for phylogenetic uncertainty, I ran the phylogenetic models for amphibian, 

bird and reptile species using 10 different trees for each class, and here I present the mean, min and max values from the different 

model runs. Sigma is the overall model residual variance. Net population change is estimated using μ values derived from state-

space models of population abundance versus time and slopes of linear models of population abundance versus time. The fluctuation 

models were based on the process noise (σ2) values from state-space models. 

Model name Variable Mean 
pMCMC 

Max 
pMCMC 

Min 
pMCMC 

Mean 
effective 
sample 
size 

Mean 
post. 
mean 

Max 
post. 
mean 

Min 
post. 
mean 

Mean 
lower 
95% CI 

Max 
lower 
95% CI 

Min 
lower 
95% CI 

Mean 
upper 
95% CI 

Max 
upper 
95% CI 

Min 
upper 
95% CI 

Amphibian 
population trends 

(Intercept) 0.587 0.621 0.558 10047 -0.009 -0.008 -0.009 -0.051 -0.046 -0.054 0.031 0.035 0.027 

 Phylogeny    7037 0.001 0.001 0.001 0 0 0 0.004 0.005 0.004 
 Sigma    9856 0.006 0.006 0.006 0.004 0.004 0.004 0.007 0.007 0.007 
 Species    7912 0.001 0.001 0 0 0 0 0.002 0.002 0.002 
Amphibian 
population 
fluctuations 

(Intercept) 0 0 0 9947 0.155 0.156 0.155 0.104 0.105 0.102 0.208 0.211 0.206 

 Phylogeny    9778 0.001 0.001 0.001 0 0 0 0.005 0.006 0.005 
 Sigma    10172 0.048 0.048 0.048 0.037 0.038 0.037 0.059 0.06 0.059 
 Species    9817 0.001 0.001 0.001 0 0 0 0.003 0.003 0.003 
Bird population 
trends 

(Intercept) 0.449 0.63 0.305 10233 0.005 0.005 0.004 -0.009 -0.005 -0.014 0.018 0.021 0.016 

 Phylogeny    3770 0 0 0 0 0 0 0 0.001 0 
 Sigma    9992 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 
 Species    6682 0 0 0 0 0 0 0 0 0 
Bird population 
fluctuations 

(Intercept) 0.001 0.006 0 10183 0.02 0.02 0.019 0.01 0.013 0.007 0.029 0.032 0.027 
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 Phylogeny    3995 0 0 0 0 0 0 0 0 0 
 Sigma    9221 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
 Species    5322 0 0 0 0 0 0 0 0 0 
Reptile population 
trends 

(Intercept) 0.832 0.856 0.812 10030 0.004 0.005 0.003 -0.038 -0.033 -0.047 0.048 0.056 0.043 

 Phylogeny    3971 0.002 0.002 0.001 0 0 0 0.007 0.01 0.005 
 Sigma    3562 0.004 0.004 0.004 0.001 0.001 0.001 0.007 0.007 0.007 
 Species    3419 0.004 0.004 0.004 0 0 0 0.007 0.007 0.007 
Reptile population 
fluctuations 

(Intercept) 0.003 0.004 0.001 9839 0.151 0.152 0.151 0.074 0.078 0.07 0.23 0.236 0.225 

 Phylogeny    2958 0.004 0.005 0.004 0 0 0 0.017 0.019 0.016 
 Sigma    3888 0.007 0.007 0.007 0.003 0.003 0.002 0.014 0.015 0.014 
 Species    6057 0.043 0.043 0.043 0.025 0.026 0.024 0.062 0.064 0.061 
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Appendix 3.25. List of species included in the UK scale analysis of population 

change across rarity metrics. 

Species name Number of populations 

Acrocephalus schoenobaenus 1 

Acrocephalus scirpaceus 1 

Agonus cataphractus 1 

Alca torda 4 

Anarhichas lupus 1 

Anas acuta 1 

Anas crecca 1 

Anas platyrhynchos 2 

Anser albifrons 4 

Anser fabalis 1 

Anthus pratensis 2 

Ardea cinerea 1 

Arenaria interpres 1 

Argentina silus 1 

Argentina sphyraena 1 

Arnoglossus laterna 1 

Asio flammeus 1 

Aythya ferina 4 

Aythya fuligula 2 

Botaurus stellaris 14 

Branta bernicla 54 

Branta canadensis 1 

Branta leucopsis 3 

Brosme brosme 1 

Bucephala clangula 1 

Bufo bufo 1 

Burhinus oedicnemus 1 

Buteo buteo 1 

Calidris alba 1 

Calidris alpina 1 

Calidris canutus 2 
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Calidris maritima 2 

Callionymus maculatus 1 

Capreolus capreolus 3 

Carduelis cannabina 2 

Cepphus grylle 2 

Cervus elaphus 2 

Cetorhinus maximus 1 

Cettia cetti 1 

Charadrius hiaticula 1 

Chelidonichthys lucerna 2 

Circus aeruginosus 1 

Circus cyaneus 1 

Clupea harengus 2 

Columba oenas 1 

Coronella austriaca 1 

Corvus corax 1 

Corvus corone 1 

Corvus monedula 1 

Crex crex 1 

Cyclopterus lumpus 1 

Cygnus columbianus 3 

Cygnus cygnus 1 

Cygnus olor 1 

Delphinus delphis 2 

Echiichthys vipera 1 

Egretta garzetta 1 

Emberiza cirlus 1 

Emberiza citrinella 1 

Emberiza schoeniclus 3 

Eptesicus serotinus 1 

Esox lucius 2 

Falco peregrinus 1 

Falco tinnunculus 1 

Fulica atra 1 

Fulmarus glacialis 7 

Gadus morhua 7 
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Glyptocephalus cynoglossus 1 

Haematopus ostralegus 2 

Haliaeetus albicilla 1 

Halichoerus grypus 52 

Hippoglossus hippoglossus 1 

Lagopus lagopus 3 

Larus argentatus 1 

Larus canus 1 

Larus fuscus 1 

Larus melanocephalus 1 

Lepidorhombus whiffiagonis 2 

Lepus timidus 1 

Limosa lapponica 2 

Limosa limosa 2 

Lissotriton vulgaris 5 

Lophius budegassa 1 

Lophius piscatorius 2 

Lullula arborea 1 

Melanogrammus aeglefinus 9 

Meles meles 1 

Mergus serrator 1 

Merlangius merlangus 8 

Merluccius merluccius 2 

Micromesistius poutassou 1 

Milvus milvus 3 

Molva molva 1 

Morus bassanus 4 

Muscicapa striata 1 

Myotis nattereri 1 

Natrix natrix 1 

Netta rufina 1 

Numenius arquata 2 

Nyctalus noctula 1 

Oenanthe oenanthe 1 

Orcinus orca 1 

Oriolus oriolus 1 
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Oryctolagus cuniculus 6 

Oxyura jamaicensis 2 

Pandion haliaetus 1 

Parus major 2 

Passer domesticus 1 

Passer montanus 1 

Perca fluviatilis 3 

Perdix perdix 1 

Phalacrocorax aristotelis 8 

Phoca vitulina 28 

Phrynorhombus norvegicus 1 

Pipistrellus pipistrellus 1 

Pipistrellus pygmaeus 1 

Platichthys flesus 1 

Plecotus auritus 1 

Plectrophenax nivalis 2 

Pleuronectes platessa 6 

Pluvialis apricaria 2 

Pluvialis squatarola 1 

Podiceps cristatus 1 

Pollachius pollachius 1 

Pollachius virens 3 

Prunella modularis 1 

Puffinus mauretanicus 2 

Pyrrhula pyrrhula 1 

Raja brachyura 1 

Raja clavata 1 

Raja microocellata 1 

Raja montagui 1 

Rhinolophus ferrumequinum 2 

Rhinolophus hipposideros 4 

Rissa tridactyla 9 

Salmo salar 1 

Salmo trutta 1 

Scomber scombrus 2 

Scyliorhinus canicula 1 
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Sitta europaea 1 

Sprattus sprattus 1 

Stenella coeruleoalba 1 

Stercorarius parasiticus 3 

Sterna dougallii 5 

Sterna hirundo 1 

Sterna paradisaea 1 

Sternula albifrons 1 

Streptopelia turtur 1 

Strix aluco 1 

Sturnus vulgaris 1 

Sylvia communis 1 

Syngnathus rostellatus 1 

Tachybaptus ruficollis 1 

Tadorna tadorna 1 

Thalasseus sandvicensis 2 

Trachurus trachurus 2 

Tringa nebularia 1 

Tringa totanus 1 

Trisopterus esmarkii 2 

Trisopterus luscus 1 

Trisopterus minutus 1 

Triturus cristatus 5 

Turdus philomelos 1 

Tursiops truncatus 4 

Uria aalge 10 

Vanellus vanellus 3 

Xiphias gladius 1 
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Appendix 3.26. Profiling method for estimating habitat specificity for 144 species 

with populations in the UK in the LPD. I extracted the habitats in which each species 

occurs from their IUCN Red List profiles (http://www.iucnredlist.org/) and I followed this 

key for consistency. 

Habitat Considered to be the same as: Considered to be different to: 

Rural park Suburban park, urban park, rural garden, suburban 
garden, urban garden  

Lake Big lake, small lake, pond, pool, dam, oxbow lake, 
reservoir  

Bog Swamp, bogland Lagoon 
Coastal cliff Island cliff   
Shingle beach Pebble beach, rock beach Sandy beach 
Stream River Weir 

Fruit Tree Plantation  Fruit Garden, orchard  
Thicket Copse, grove, small stand  
Forest  Woodland 
Glade Forest Clearing  
Broadleaf Deciduous  
Urban Suburban  

River margin Various types of river margins  

Tidal Creek  Estuary 

Harbour Dock, jetty, pier  

Bush lands Shrublands  

Irrigation channel Ditch  

Heath Moorland  

Sandy beach Spit, dune Shingle beach, pebble beach, 
rock beach 

Crag Rocky outcrop, cliff, rocky slope  

Marsh Wet meadow  

Islet Island  
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Appendix 3.27. References for eighty time series (or 1% of analysed time series) 

which had very little variance (error < 0.001). See Appendix 6e for a visualisation of 

the data from a subsample of those time series. 

Time series id Data source citation 

4178 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13773 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3697 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

18118 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13797 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4218 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4220 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3725 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

2916 
Sauer, J. R., J. E. Hines, et al. (2012). The North American Breeding Bird Survey, Results 
and Analysis 1966 - 2011, USGS Patuxent Wildlife Research Center, Laurel, MD. 

13846 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3771 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

2987 
Sauer, J. R., J. E. Hines, et al. (2012). The North American Breeding Bird Survey, Results 
and Analysis 1966 - 2011, USGS Patuxent Wildlife Research Center, Laurel, MD. 

4236 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4237 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3803 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3808 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 
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3816 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3813 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3821 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13944 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

11350 
KeiÅÁs, O. (2005). Impact of changes in agricultural land use on the Corncrake Crex crex 
population in Latvia. Acta Universitatis Latviensis 691: 93-109. 

13976 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3997 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3995 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3998 
Environment Canada (2014). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2012. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13694 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13520 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3018 
Sauer, J. R., J. E. Hines, et al. (2012). The North American Breeding Bird Survey, Results 
and Analysis 1966 - 2011, USGS Patuxent Wildlife Research Center, Laurel, MD. 

13687 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14076 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14074 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3326 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14095 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14093 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13584 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 
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3883 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

10449 
Tofft, J. (2007). Tranens Grus grus bestandsudvikling i Danmark 1990-2006. Dansk 
Ornitologisk Forenings Tidsskrift 101(4): 67-72. 

2579 Fylkesmannen i Vestfold (2004). Hekketakseringer, sjÌüfugl i Vestfold, MiljÌüvernavdelingen. 
2632 Fylkesmannen i Vestfold (2004). Hekketakseringer, sjÌüfugl i Vestfold, MiljÌüvernavdelingen. 

3360 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14286 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4245 
Environment Canada (2014). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2012. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4247 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

18111 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4229 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

1037 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14728 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14208 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3947 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4254 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4253 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14217 
Environment Canada (2014). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2012. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3958 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3245 
Sauer, J. R., J. E. Hines, et al. (2012). The North American Breeding Bird Survey, Results 
and Analysis 1966 - 2011, USGS Patuxent Wildlife Research Center, Laurel, MD. 

14249 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 
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6515 
Herrero, M. A. N. (2006). Results of a 10-years ( 1994-2003) monitoring Programme of 
Shore Birds Populations in the Protected landscape of Rambla Salada and Ajauque ( Inner 
Saltworks) in Murcia, Spain. A Contribution for 2010 Biodiversity Index. 

4261 
Environment Canada (2014). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2012. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14327 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3674 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

13636 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4051 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4069 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4086 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4088 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4083 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

3119 
Sauer, J. R., J. E. Hines, et al. (2012). The North American Breeding Bird Survey, Results 
and Analysis 1966 - 2011, USGS Patuxent Wildlife Research Center, Laurel, MD. 

4085 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4087 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4093 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

5700 
Bailey, K. M. and S. A. Macklin (1994). Analysis of patterns in larval walleye pollpck 
Theragra chalcogramma survival and wind mixing events in Shelikof Strait Gulf of Alaska. 
Marine Ecology Progress Series 113: 1-12. 

4099 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

8476 
Lee, P.-F., I. C. Chen, et al. (2005). Spatial and temporal distribution patterns of bigeye tuna 
(Thunnus obesus) in the Indian Ocean. Zoological Studies 44(2): 260-270. 

14807 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 
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14801 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

14804 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4132 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4143 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4139 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

4151 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 

18190 
Environment Canada (2015). North American Breeding Bird Survey - Canadian Trends 
Website. Data-version 2014. from http://www.ec.gc.ca/ron-bbs/P001/A001/?lang=e. 
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Appendix 3.28. References for time series which appear to show logistic growth 

with little variance (see Appendix 3.6e for visualisation of data). 

 
Time series id Data source citation 

468 
NERC Centre for Population Biology (1999). The Global Populations Dynamics 
Database. http://cpbnts1.bio.ic.ac.uk/gpdd/, Imperial College,.| Batten, L. A. and J. H. 
Marchant (1977). Bird Population Changes for Years 1974-75. Bird Study 24(1): 55-61. 

17803 
Government of Antigua and Barbuda (2014). Antigua and Barbuda Fifth National 
Report to the Convention on Biodiversity, Environment Division: 1-66. 

10193 
Giling, D., R. D. Reina, et al. (2008). Anthropogenic influence on an urban colony of 
the little penguin Eudyptula minor. Marine and Freshwater Research 59(7): 647-651. 
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Appendix 4. Supporting information for Chapter 4 
“Landscape-scale forest loss as a catalyst of population 
and biodiversity change” 
 

Supplementary methods 
Databases 
 

Forest cover change databases 
I extracted historic forest loss and habitat transitions from the LUH database (850 – 2015, 
0.25° degree resolution which is around 27 km, Hurtt et al., 2011), contemporary forest 
cover change from the GFC database (2000 – 2016, forest loss and gain at a 30 m 
resolution, Hansen et al., 2013), also from the ESA Landcover database (1992 – 2015, 
300m resolution, ESA Climate Change Initiative, 2017) and habitat transitions from the 
MODIS Landcover database (2000 – 2013, 500m resolution, Channan et al., 2014). 
 
By synthesising information from scenario data based on Earth Dynamics Models (LUH) 
and remote-sensing databases (GFC, ESA, MODIS), I estimated historic baselines for 
forest loss across sites, as well as contemporary forest cover change (gain and loss) and 
habitat transitions. I calculated overall forest cover change rather than using an annual 
rate, because I considered total habitat change that better captures cumulative effects to 
be more meaningful for comparison with long-term population and biodiversity trends. 
GFC and MODIS detect forest cover, with no distinction between primary and secondary 
forests, thus I derived information on transitions from primary to secondary forest from 
the LUH database. Together, the four databases (GFC, MODIS, LUH, ESA) encompass 
two different elements of land-use change: 1) land cover types and long-term historical 
reconstructions of past land-use and habitat conversions and 2) high-resolution satellite 

data from recent years of forest cover change and habitat conversions. 
 
Population time series (Living Planet Database) 
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I analysed 2729 population time series with records distributed around the world. These 
time series represent repeated monitoring surveys of the number of individuals in a given 
area (species’ abundance over time), to which I refer as “populations”. Geographic 
representation is variable with, for example, an under-representation of tropical regions 
(Figure 2A). In the LPD, some populations have precise coordinates, whereas the location 
of others are approximate. Because of the extent over which I calculated forest cover 
change (96 km2), I included both populations with precise and approximate coordinates 
in my analysis. I only included populations with at least five survey points and duration 
varied across time series ranging between five to 44 years covering the period between 
the years 1970 and 2014 (Appendices 4.2, 4.11).  

 
Biodiversity time series (BioTIME Database) 
I analysed 3361 time series from 190 studies from terrestrial biomes across the globe that 
make up a part of the BioTIME database (Dornelas et al., 2018, download link available 
at http://biotime.st-andrews.ac.uk/BioTIME_download.php and list of non-public studies 
is included in Appendix 4.20 ). Similarly to the LPD, tropical regions and some taxa such 
as amphibians and reptiles were under-represented in BioTIME. To account for the 
different spatial extents of the BioTIME database, studies with multiple locations and 
extents > 71.7 km2 were partitioned into 96 km2 grids (studies with extents < 71.7 km2 
were assigned to the grid cell in which they were centred), and then sample-based 
rarefaction was applied to standardise sampling within each time series (Blowes et al., 
2019). The identity of each study was always kept intact, and I did not combine data from 
different studies, e.g., if there were data from two studies in the same cell, those 
represented separate time series. When analysing forest loss across the whole duration 
of each time series, I included assemblage time series with at least five survey points and 
duration varied across time series ranging between five to 158 years covering the period 
between the years 1858 and 2016 (Appendices 4.2, 4.11). When analysing forest loss 
between 2000 and 2016 (the duration of the GFC database), I included time series with 
two or more data points. Protected areas contained 63 of 199 (32%) study locations, but 



Appendix 4 

291 
 

because those studies covered smaller sampling areas, overall only 1% of the analysed 
and rarefied time series were located inside protected areas. 
 
Calculating population change 
I calculated population change using state-space models which are particularly 
appropriate when quantifying change in data with varying collection methodology, as they 
take into account observation error and process noise (Knape et al., 2011; Pedersen et 
al., 2011). For more details on state-space model calculations, see Humbert et al. 2009 
(Humbert et al., 2009) and Chapter 3. I scaled the population size data to be between 0 
and 1 to analyse within-population relationships and to make sure that I were 

not conflating within-population relationships and between-population relationships (van 
de Pol & Wright, 2009). State-space models partition the variance in abundance 
estimates into process error (σ2) and observation or measurement error (τ2) and estimate 
population trends (μ):  

!" = !" − 1 + 	( + 	)", (1) 

where Xt and Xt-1 are the scaled (observed) abundance estimates (between 0 and 1) in 
the present and past year, with process noise represented by εt ~ gaussian(0, σ2). I 
included measurement error following: 

*" = !" + +", 
where Yt is the estimate of the true (unobserved) population abundance with 
measurement error: 

Ft ~ gaussian(0, τ2). 
I substituted the estimate of population abundance (Yt) into equation 1: 

*" = !" − 1 + 	( + 	)" + +" . 

Given !" − 1 = *" − 1 − +" − 1, then: 
*"	 = *" − 1	 + ( + )"	 + +"	 − +" − 1 . 

For each time series, I calculated overall population change (μ) experienced over different 
periods matching the questions in Figure 1: 1) across the periods before and after 
contemporary peak forest loss, 2) across the full duration of the time series, 3) from 2000 
to 2016 (matching the temporal scale of the GFC database), and 4) from 2000 to 2013 
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(matching the temporal scale of the MODIS database). I standardised the number of 
years over which I calculated population change before and after peak forest loss on the 
population-level, meaning that the number of years before and after (five or more) was 
the same within populations, but might differ among populations.  
 
Calculating richness change 
To estimate richness change, I modelled species richness versus time (year, mean 
centred) with random slopes and intercepts for each rarefied cell and a Poisson error 
distribution with a log link.  

,-.((0, 2, ") = 40 + 400 + 400, 2 + (41 + 410 + 410, 2)67890, 2, ",	

60, 2, "	 ∼ 	;-2<<-=((0, 2, ") , 
where yearj,i,t is the time in years, β0 and β1 are the global intercept and slope (fixed 
effects), β0j and β1j are the biome-level departures from β0 and β1 (respectively; biome-

level random effects), β0j,i and β1j,i are the (nested) cell-level departures from β0 and β1 
(cell-level random effects); yj,i,t is the (rarefied) species richness within the jth biome in 
the ith cell in year t. 
 
From the richness over time model, I extracted the posterior means for richness change 
for each time series (i.e., the cell-level slope estimates), which then became the response 
variable in the second stage of my analyses where I tested richness change versus forest 
cover change.  
 
For time series with five or more years of monitoring records, I calculated overall 
richness change experienced 1) across the periods before and after contemporary peak 
forest loss, and 2) across the full duration of the time series. For time series with two or 
more years of monitoring records, I calculated overall richness change experienced 3) 
from 2000 to 2016 (matching the temporal scale of the GFC database), and 4) from 
2000 to 2013 (matching the temporal scale of the MODIS database). The GFC and 
MODIS databases cover shorter time periods, thus I included biodiversity time series 
with shorter durations than the five-year cut off point that was used in the rest of my 
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analyses using datasets with longer durations (but note that 76% of biodiversity time 
series had a duration of three or more years). When I calculated slopes of richness 
change over time, I included a time series ID random effect. Most time series (72%) 
were from separate studies and 28% included more than one time series per study 
because these studies covered very large areas (e.g., with time series located across 
the continental US). Calculating richness slopes with a model including a nested 
random effect (time series ID within study) produced very similar estimates. 
 
Calculating turnover 
To determine changes in community composition, I calculated the turnover component 

of beta diversity. Turnover quantifies the changes due to species replacement rather 
than changes in species abundances (Baselga, 2010; Blowes et al., 2019). I calculated 
turnover between the end of each time period (outlined above) and the first year of 
observation in the same period. Turnover is bound between zero and one, where zero is 
no change in species composition and one indicates that all of the original species of a 
community have been replaced with new species. I calculated turnover for the same 
time periods as for richness change (outlined above). Previous studies using the 
BioTIME database have found that calculating turnover relative to the second or the last 
year of observation produces similar results (Dornelas et al., 2014). 
 
Statistical analyses 
I matched the temporal scales of the forest cover change data and the population and 
biodiversity data when investigating attribution signals (i.e., evidence that a predictor 
variable is a potential driver of population or biodiversity change). For example, when 
testing the effects of forest cover change and land-use transitions as detected by GFC 
(2000 to 2016) and MODIS (2000 to 2013), I calculated population and biodiversity 
change for the matching time periods. Because of the longer duration of the LUH 
database, I was also able to extract forest and land cover information for the full duration 
of the LPD and BioTIME time series and to calculate the peak and overall forest loss 
during the period from 850 to 2015. For my analyses of all-time and contemporary peak 
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forest loss and overall forest loss, I excluded locations which had less than 5% (0.05 out 
of maximum 1) forest cover loss (using the LUH database over a time period matching 
the duration of each time series). For my analyses of contemporary forest loss, I excluded 
locations which had less than 0.5 km2 forest cover change (using the GFC database over 
a time period matching the duration of GFC from 2000 to 2016). For my cross-scale 
analysis, I excluded locations which had no forest cover across the duration of the time 
series in both the 96 km2 cells and the 500 km2 larger landscape cells from my analyses 
of population and biodiversity change versus forest cover gain and loss from 2000 to 2016 
(using the GFC database). See Appendix 4.19 for the outputs of all statistical models and 
their respective sample sizes. 

 
Prior specification 
I used weakly regularizing normally-distributed priors for the global intercept and slope 
for all statistical models except the model of turnover versus overall forest cover change 
(which was a zero one inflated model): 

40	 ∼ 	.8><<28=(0, 6),	

41	 ∼ 	.8><<28=(0, 6). 
For the turnover models that had a zero one inflated beta distribution, I used the following 
priors: 

40	 ∼ 	.8><<28=(0, 6),	

41	 ∼ 	.8><<28=(0, 6), 
@-2	~	.8><<28=(0, 0.5), 
D-2	~	.8><<28=(0, 0.5), 

where zoi is the probability of being a zero or a one and coi is the conditional probability 
of being a one (given an observation is a zero or a one). 
 
Group-level parameters (the rarefied cell random effect in the species richness over time 
model, i, and the biome random effect in all models, j) were all assumed to be gaussian(0, 
σ), and priors on the σ were the same for all models: 

E400	 = E400, 2	 ∼ 	ℎ8,G	H8>Dℎ6(0, 2). 



Appendix 4 

295 
 

 
Historical baselines 
To estimate the historic baseline of forest cover change, I calculated change in % forest 
cover across 10-year periods for each site from 850 to 2015 from the LUH database. I 
then determined all-time peak forest loss as the period when the most forest loss 
occurred (calculated using the difference in forest area at the start and end of 
standardised 10-year blocks). Here, I asked the question: 

• Are populations more likely to experience declines when the monitoring includes the 
period of all-time peak forest loss (the largest reduction in forest area between 850 
and 2015)? 

To determine if population change differed based on whether population time series were 
recorded before, during, or after the period of all-time peak forest loss, I modelled μ 
(population change) as a function of when monitoring started. I defined all-time peak 
forest loss as the timing of the largest forest loss event at the location of each time series 
between the years 850 and 2015. I used a categorical variable with three levels – before, 

during or after peak forest loss – and time series duration (numeric) as fixed effects, with 
a biome random effect to account for the spatial clustering of the data. Low sample size 
precluded a similar analysis for richness change and turnover (Appendix 4.3B). The 
model was as follows: 

(0, 2, J = 40 + 400 + 41 ∗ L>98"2-=0, 2, J + 	42 ∗ J-=2"-92=.	<"89"0, 2, J,	

60, 2, J	 ∼ 	.8><<28=((0, 2, J, E2), 
where durationj,i,m is the duration of the time series in years of cell i within biome j for 
monitoring start m, and monitoring startj,i,m is an indicator variable denoting when 
monitoring started; β0, β1 and β2 are the global intercept and slope estimates for duration 
and the categorical monitoring start variable respectively (fixed effects), β0j is the biome-
level departures from β0 (respectively; biome-level random effects); yj,i,m is the estimate 
for change in population size or species richness for the ith cell in the jth biome for the 
mth monitoring start. 
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Contemporary forest loss 
To determine contemporary peak forest loss for each time series of monitoring data, I 
used the LUH database to calculate yearly changes in forest cover across the duration of 
each time series and determined the year when the most change had occurred 
(contemporary peak forest loss). I compared biodiversity change across equal durations 
before and after the year of contemporary peak forest loss. E.g., if a time series included 
seven years of biodiversity data before the peak in recent forest cover change and 10 
years of data after that peak, I included only the first seven years of biodiversity data after 
the forest cover change peak (making for a total of 14 years of data included in the 
analysis for this example time series). The v2h release of LUH includes annual gridded 

fractions of land-use states for the period from 850 to 2013 at 0.25° x 0.25° resolution. 
The estimates are based on historical reconstructions using Earth System models, with 
inputs such as regional and national rates of wood harvest and potential biomass density. 
The accuracy and precision of LUH increases towards the modern day, when there are 
more available data to inform the Earth System models. Note that unlike GFC, LUH 
estimates forest cover as a proportion (bounded between zero and one). I asked: 

• Are population abundance, richness and turnover trends stronger in the period after, 
relative to before, contemporary peak forest loss? 

To test if temporal population and biodiversity change differed before and after peak forest 
loss at the site-level, I split each time series into two periods – before and after peak 
deforestation – and estimated population change, richness change and turnover for each 
period separately. Then, to infer if population and biodiversity change differed following 
peak forest loss, I modelled μ (population change), richness change (cell-level random 
slopes) and turnover as a function of period (categorical with two levels – before or after 
forest loss) and time series duration (numeric) as fixed effects, with a biome random effect 
to account for the spatial clustering of the data. For population and richness change, I 
modelled the positive and negative components of the distributions of change separately, 
e.g., one model for populations with positive μ values and one model for populations with 
negative μ values. This approach allowed me to test if the effects of forest loss differ 
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across the positive and negative dimensions of population and biodiversity change. The 
models were as follows: 

(0, 2, ; = 40 + 400 + 41 ∗ L>98"2-=0, 2, ; + 	42 ∗ ;792-L0, 2, ;,	

60, 2, ;	 ∼ 	.8><<28=((0, 2, ;, σ
2), 

where durationj,i,p is the duration of the time series in years of cell i within biome j for 
period p, and periodj,i,p is an indicator variable for the period (before or after forest loss); 
β0, β1 and β2 are the global intercept and slope estimates for duration and the categorical 
period effect, respectively (fixed effects), β0j is the biome-level departures from β0 (biome-
level random effects); yj,i,p is the estimate for change in population size or species richness 
for the ith cell in the jth biome for the pth period. 
 
To model the change in turnover before and after contemporary peak forest loss, I 
followed the same conceptual framework as outlined above, but I used a zero one inflated 
beta distribution to account for the properties of turnover (bounded between zero and 
one, inclusive, where one is a complete change in species composition). The probability 

density function for the zero one inflated beta distribution is: 

N7"82=G(6; P, Q, (, R) = 	S
P(1 − Q),																										6 = 0
PQ,																																						6 = 1
(1 − P)QG(6; (, R), 0 < 6 < 1,

 

where α is the probability that a zero or one occurs, γ is the probability that a one occurs 
(given an observation is a zero or a one), and μ and ϕ are the mean and precision of the 

beta distribution, respectively. In the parameterisation approach that I used (Bürkner, 
2017) ϕ is inversely related to the variance. Beta parameterisation is also sometimes 
expressed through the parameters p and q that can be derived from my framework 
following ϕ = p + q (Ferrari & Cribari-Neto, 2004). Because only 7% of time series did not 
experience any change in species composition (6 = 0) in the time period after 
contemporary forest loss, and less than 1% of time series had a completely new set of 
species (6 = 1) occupying the ecological communities, for 6 = 0 and 6 = 1, α and γ were 
modelled assuming a Bernoulli distribution and logit-link function, and models were fit with 
only an intercept. For 0 < 6 < 1, I assumed a beta error distribution and a logit-link function: 
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,-.2"((0, 2, ;) = 40 + 	400 + 41 ∗ L>98"2-=0, 2, ; + 42 ∗ ;792-L0, 2, ;, 
60, 2, ;	~	U7"8

((0, 2, ;, R),  
where durationj,i,p is the duration of the time series in years of cell i within biome j for 
period p, and periodj,i,p is an indicator variable for the period (before or after forest loss); 
β0, β1 and β2 are the global intercept and slope estimates for duration and the categorical 
period variable respectively (fixed effects), and β0j are the biome-level departures from β0 
(biome-level random intercepts); yj,i,p is the estimate of turnover for the ith cell in the jth 
biome for the pth period. 
 
Additionally, I investigated the relationships between the magnitude of contemporary 
forest loss and gain experienced during each time series and the population and 
biodiversity trends at each site. I asked: 

• Do higher magnitudes of forest loss correspond with more population and biodiversity 
losses over time, and higher magnitudes of forest gain with more population and 
biodiversity gains? 

I used two databases (LUH, GFC) to calculate the magnitude of forest cover change 
across sites. First, to estimate forest cover change across a time period matching the full 
duration of the biodiversity observations, I derived the change in primary forest cover from 
the LUH database (Hurtt et al., 2011) for 96 km2 cells around the location of each 
population in the LPD database and for the standardised grid cells of the BioTIME 

database (~ 96 km2 each, ). For my analyses, I focused on time series from locations that 
have experienced at least 5% (0.05 out of maximum 1) forest loss. To calculate total forest 
cover change over the period of a given population or biodiversity time series, I subtracted 
the proportion of forest cover in the first year of biodiversity monitoring from the proportion 
of forest cover in the last year. The type of forest cover change detected by the LUH 
database was predominantly forest loss, with forest gain occurring infrequently and at 
very small magnitudes (<0.001 out of maximum 1), thus I focused on forest loss when 
using this database. 
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Second, I derived overall forest loss and forest gain across the 2000 to 2016 period for 
96 km2 cells around the location of each population in the LPD database and for the 
standardised grid cells of the BioTIME database (~ 96 km2 each) from the GFC database 
using the Google Earth Engine (Gorelick et al., 2017). The GFC database provides high 
resolution forest cover change data, derived from Landsat satellite observations at a 30-
meter spatial resolution. I calculated the total area of forest cover gain and loss separately 
(measured in km2) for each 96 km2 cell on a yearly time step. I then summed the yearly 
values for the period that coincided with population and biodiversity monitoring to estimate 
overall forest cover gain and loss (two separate metrics). For example, for a biodiversity 
time series spanning 2002 to 2009, my forest cover gain and loss metrics included the 

total amount of forest cover gained and lost during that same period. For my analyses, I 
focused on time series from locations that have experienced at least 0.5 km2 of forest 
gain or loss. GFC does not distinguish between primary forest, secondary forest and 
plantations, but it does provide a very high-resolution measure of general forest cover 
(Curtis et al., 2018; Hansen et al., 2013). The drivers of the forest loss detected by GFC 
across my study sites are predominantly forestry, changes in agricultural practices and 
wildfires (Curtis et al., 2018). Note that the GFC database spans from 2000 to 2016, with 
forest gain data available up to 2014, whereas the earliest terrestrial biodiversity record 
in BioTIME is from 1858.  
 
To test the effect of forest cover change on population and biodiversity change among 
sites, I modelled population and biodiversity change versus overall forest cover change 
(calculated as forest cover gain and forest cover loss (GFC database, 2000 to 2016) 
and forest loss (LUH database, across the duration of the time series). Models of 
population and richness change versus forest cover change were fitted assuming 
Gaussian error. 

(0, 2 = 4V +	4VW + 4X ∗ L>98"2-=0, 2 + 4Y ∗ G-97<"	Dℎ8=.7W,Z, 

60, 2	 ∼ 	.8><<28=((0, 2, σ
2), 

where durationj,i is the duration of the time series in years of cell i within biome j, forest 
changej,i is the forest cover change in cell i within biome j; β0, β1 and β2 are the global 
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intercept and slope estimates for duration and forest cover change respectively (fixed 
effects), and β0j are the biome-level departures from β0 ( biome-level random intercepts); 
yj,i is the population or richness change metric (a separate model for population declines, 
population increases, richness losses and richness gains) in the ith cell within the jth 
biome. 
 
Models of turnover versus forest cover change were fit with a zero one inflated beta 
distribution to account for the properties of turnover (bounded between zero and one). I 
used the same probability density function for the zero one inflated beta distribution as in 
the model for turnover before and after contemporary peak forest loss. For 6 = 0 and 6 = 

1, α and γ were modelled assuming a Bernoulli distribution and logit-link function, and I 
fit models with only an intercept. For 0 < 6 < 1, I assumed a beta error distribution and a 
logit-link function: 

,-.2"[(W,Z\ = 4V +	4VW + 4X ∗ L>98"2-=W,Z + 4Y ∗ G-97<"	Dℎ8=.70, 2, 

6W,Z~U7"8[(W,Z, R\,  

where durationj,i is the duration of the time series in years of cell i within biome j, forest 
changej,i is the forest cover change in cell i within biome j; β0, β1 and β2 are the global 
intercept and slope estimates for duration and forest cover change respectively (fixed 
effects), and β0j are the biome-level departures from β0 (biome-level random intercepts); 
yj,i is turnover in the ith cell within the jth biome. 
 
Temporal lags 
To test for temporal lags in population and biodiversity responses to contemporary peak 
forest loss, I first calculated when population and biodiversity change were greatest 
following peak forest loss for each time series. Rates of population change were 
calculated using state-space models and a Kalman filter (Humbert et al., 2009; Leung et 
al., 2017). Peak richness change and peak turnover were calculated as the maximum 
value of the absolute differences between consecutive observations of species richness 
and turnover, relative to the species richness and composition before contemporary peak 
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forest loss. I then quantified lag as the number of years between contemporary peak 
forest loss and peak population/biodiversity change. I asked: 

• Do temporal lags in population and biodiversity change following contemporary peak 
forest loss increase with higher generation time across taxa? 

I modelled lag as a function of taxa, as I expect that species with longer generation times 
will respond to disturbance more slowly.  

(0, 2 = 400 + 4X ∗ "8]8W,Z,	

60, 2	 ∼ 	.8><<28=((W,Z, E
Y), 

where taxaj,i is the taxa of the cell i in the biome j time series, β1 is the slope for taxa effect 
(fixed effect), and β0j are the biome-level random intercepts; yj,i is the temporal lag in the 
population or biodiversity change metric (a separate model for population change, 
richness change and turnover) for the ith cell within the jth biome. 
 
I extracted mammal generation times from the Pacifici et al. 2013 Database (Pacifici et 
al., 2013) N = 88) and bird generation times from the BirdLife Database (BirdLife 
International, 2018) N = 494). To test lagged responses to forest loss in greater detail, I 
asked: 

• Within bird and mammal taxa, do species with longer generation times experience 
longer lags in population change following contemporary peak forest loss? 

I modelled lag as a function of generation time in birds and mammals, the taxa for which 
generation time data were freely available (BirdLife International, 2018; Pacifici et al., 
2013). 

(. = 40 + 41 ∗ .7=798"2-=	"2J7.,	

6.	 ∼ 	.8><<28=((., E2), 
where generation timeg is the mammal generation time in years, β0 and β1 are the global 
intercept and slope (fixed effect); yg is the temporal lag in population change for a species 
with generation time g.  
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Appendix 4.1. Index of key research themes and their associated sections in 
Appendix 4. See Appendix 4.19 for model outputs and sample sizes. For details on each 
step of my analyses, see correspondingly numbered sections in the text below. The 

methods and key results for themes 1-3 are covered in the main text of Chapter 4. 
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 1. Historical baselines 
 
All-time peak forest loss occurred at variable time points across the population and 
biodiversity time series (Appendix 4.2), but the time since all-time peak forest loss was 
not directly related to contemporary trends in population abundance, species richness 
and turnover (Appendix 4.3). I found that local-scale population declines were most 
pronounced when the monitoring occurred during the period of all-time peak forest loss 
(see Chapter 4 for further details). 
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Appendix 4.2. Historic peaks of forest cover change often occurred decades to 
centuries before population monitoring starts (38% of time series), with some 
instances (23% of time series) of peaks in forest cover change occurring after 
population monitoring has ceased. All-time peak forest occurred before biodiversity 
monitoring started in 78% of cases. Each line represents a single population time series 
(out of 2,729), part of the Living Planet Database (a) (LPI, 2016) or the BioTIME Database 
(b), which included 190 studies (Dornelas et al., 2018). Note that the BioTIME studies 
were rarefied into equally sized cells (~96 km2), resulting in 3,361 time series and peaks 
in forest cover change were calculated on the time series level for analysis, but because 
of the large number of cells (> 3,000), here I visualised study-level data. Grey lines start 

at the historic peak of forest cover change for each time series. The detected forest cover 
change constituted declines in forest cover, calculated based on the LUH database (Hurtt 
et al., 2011). Green and purple lines show the duration of biodiversity monitoring, with the 
break between green and purple indicating the largest forest cover change event across 
the duration of each time series.  
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Appendix 4.3. Time since all-time peak forest loss was a poor predictor of the 
variation in contemporary population and biodiversity change, and for many of the 
locations represented by the time series in my study, there was more forest loss 
before monitoring began, relative to during the monitoring period. 
 
 2. Contemporary forest loss 
 
I found that local-scale increases and decreases in abundance, species richness, and 
temporal species replacement (turnover) were intensified by up to 48% following forest 
loss (see Chapter 4). I did not detect an effect of the magnitude of forest change on 
population and biodiversity losses. Greater magnitudes of forest loss did not correspond 
with larger increases in turnover or greater declines in populations and richness, and 
richness gains increased with forest loss (Appendix 4.4-4.6). Similarly, gains in forest 
cover did not correspond with gains in population abundance and species richness 

−0.2

−0.1

0

0.1

0.2

0 400 800 1200

Years since all−time peak forest loss

µ  

−0.8

−0.4

0

0.4

0.8

0 400 800 1200

Years since biggest forest loss

R
ic

hn
es

s 
ch

an
ge

0

0.25

0.50

0.75

1.00

0 400 800 1200

Years since all−time peak forest loss

Tu
rn

ov
er

a Population change b Richness change c Turnover

During

Before

0.0 0.2 0.4 0.6 0.8

Forest loss (proportion)

BioTIME Database
Living Planet Database

d Forest loss before and during monitoring

During

Before

0.0 0.2 0.4 0.6 0.8

Forest loss (proportion)

BioTIME Database
Living Planet Database

During

Before

0.0 0.2 0.4 0.6 0.8

Forest loss (proportion)

BioTIME Database
Living Planet Database



Appendix 4 

306 
 

(Appendix 4.4-4.6). When shorter time series were included in the analyses, larger forest 
cover loss corresponded with larger species richness gains (slope = 0.10, CI = 0.02 to 
0.06, see Appendix 4.19 for outputs of models using time series with two or more survey 
points, and using time series with five or more survey points). I also quantified population 
change using the BioTIME database (following the same state-space modelling 
framework as with the LPD) and found similar lack of directional patterns in the 
relationships between population change and overall forest loss (Appendix 4.4f). 

 
Appendix 4.4. Model visualisations for forest cover change and population change. 
Among time series, there were no directional trends between negative population change 
and forest cover change, quantified from both the GFC (Hansen et al., 2013) and LUH 

(Hurtt et al., 2011) databases. Sample size was too low for the convergence of a model 
testing negative population change versus forest cover gain. f, Similar lack of directional 
trends between population change and forest loss were apparent when using population 
change, calculated based on the terrestrial vertebrate and invertebrate species population 
time series within the BioTIME Database. Model fits on a-e are mixed effects models with 
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a biome random effect and a Gaussian error distribution. Grey shades indicate the 95%, 
80% and 50% credible intervals. See Appendix 4.19 for model outputs. 
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Appendix 4.5. Model visualisations for forest cover change and biodiversity change 

(species richness and turnover). Among time series, greater forest loss corresponded 

with lower species richness loss, though note that the effect size was small (slope = 0.01, 

CI = 0.01 to 0.01) and increases in forest cover were related to lower turnover (slope = -

0.26, CI = -0.47 to -0.07). d, e, f, There were no directional trends between species 

richness losses and forest cover gain, and between turnover and forest cover loss. 
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Asterisks indicate relationships where the 95% credible intervals for the slope did not 

overlap zero (a, e, j). Richness change was calculated using a mixed effects model with 

a Poisson error distribution. Turnover refers to changes in species composition due to 

species replacement in the final year of the time series relative to the start of the time 

series. Model fits on a-f are mixed effects models with a biome random effect and a 

Gaussian error distribution. Model fits in h-j are zero-one-inflated beta models with a logit 

link function. Grey shades indicate the 95%, 80% and 50% credible intervals. See 

Appendix 4.19 for model outputs. 

 

 
Appendix 4.6. Population change, richness change and turnover across sites 
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(forest loss calculated using LUH database) did not influence population declines and 

increases, richness losses, or turnover. Standardised effect sizes were calculated by 

dividing the model slopes by the standard deviation of the dependent variable. Numbers 

indicate sample size. For model visualisations, see Appendices 4.4-4.5.  

 
 3. Temporal lags 
 
Temporal lags in population- and assemblage-level shifts after forest loss extended up to 
50 years and were longer for species with longer generation times (see main text for 
further detail). Broadly across time series, the years in which forest loss peaked also 

coincided with peaks in population change, richness change and turnover, but there were 
also temporal delays in population and biodiversity change (Appendix 4. 7 and see Figure 
5 in Chapter 4). The duration and number of survey points in population and biodiversity 
monitoring (Appendix 4.8) can influence my ability to detect responses to global change 
drivers, thus reinforcing the importance of frequent and long-term monitoring (Mihoub et 
al., 2017). I included duration as a fixed effect in my statistical models to test whether time 
series duration influenced the detected trends in population abundance, species richness 
and turnover. The trends often did not vary based on duration, with a general tendency 
for longer-duration time series to have more stable trends (See Appendix 4.19 for further 
details). As continued monitoring encompasses longer temporal spans with more frequent 
surveys, we will improve my ability to detect and attribute shifts in the Earth’s biota. 
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Appendix 4.7. Generally, the years in which peak forest loss occurred across sites 

coincided with the most population and biodiversity change, but there were also 

lags in time (a-c).  
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Appendix 4.8. The duration of time series is broadly positively correlated with the 
number of survey points in each time series. Yellow shows the Living Planet database, 
blue shows BioTIME. 
 
 4. Biogeographic patterns 
 
Methods 
The effects of forest loss on populations and ecological assemblages are likely 
heterogeneous around the world. Thus, I asked: 
 

• Do forest loss effects vary across latitude and specifically, are the effects of forest 
loss on population and biodiversity change in the tropics different relative to the 
rest of the world? 

• Do forest loss effects on population change, richness change and turnover vary 
across biomes? 

 
To investigate differences in how forest loss influences populations in different latitudes, 
and specifically in the tropics relative to the rest of the world, I included an interaction 
term between amount of forest loss and a categorical variable (in the tropics/not in the 
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tropics) in a model of population trends versus magnitude of forest loss across the 
duration of each time series. A similar analysis was not possible for biodiversity change 
because of low sample size in tropical relative to non-tropical locations. Additionally, I 
visualised the posterior mean distributions per biome from my models comparing 
population change, richness change and turnover after contemporary peak forest loss, 
relative to the period before the forest loss event occurred. 
 
Results 
I did not detect overall directional patterns in forest loss effects on populations and 
ecological assemblages across latitudes (Appendix 4.9a-c). However, I found that the 

effects of forest loss were more likely to be negative in the tropics relative to the rest of 
the globe. In particular, population increases were less frequent at tropical sites where 
higher amounts of forest have been lost (Appendix 4.19d-e). Population declines after 
contemporary peak forest loss were also more pronounced in tropical biomes (Appendix 
4.10a). Richness losses after peak forest loss were more pronounced in montane biomes 
(Appendix 4.10b), whereas all biomes experienced varying amounts of turnover 
(Appendix 4.10c). The geographic gaps in the Living Planet and BioTIME databases 
reflect current differences in survey effort and public availability of data. With future 
monitoring targeted to places where forest loss effects are stronger, such as the tropics 
and places currently experiencing peaks in forest loss, we will be better able to capture 
the variety of ways in which human activities are transforming ecosystems. 
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Appendix 4.9. I detected little latitudinal patterning in the relationships between 
forest loss, population and biodiversity change, with the exception of tropical 
latitudes, where the effects of forest loss on population change were more negative 
in the tropics compared to the rest of the planet. Plots show population change, 
richness change and turnover over time across latitude (a, b, and c) for time series that 
experienced at least 5% loss in forest cover across their duration. Model summary graphs 
(d-e) show effect sizes and 95% credible intervals from models which included a binary 
categorical variable (in the tropics or not; for population declines there were 453 time 
series non-tropical and 17 tropical time series, and for population increases there were 
351 non-tropical and 18 tropical time series). I categorised time series based on whether 
or not they fall within the Tropics of Capricorn and Cancer. Forest loss was calculated 
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using the LUH database as proportions bounded between zero and one across the same 
duration as that of each individual time series. See Appendix 4.19 for full model outputs. 
 

 
Appendix 4.10. Biome differences in shifts in population change, richness change 
and turnover after contemporary peak forest loss, relative to the period before the 
forest loss event. Distributions show the posterior means extracted from mixed effects 
model comparing trends before and after peak forest loss, with biome as a random effect. 
See Appendix 4.19 for model outputs.  
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 5. Cross-taxa patterns 
 
Methods 
To determine if different groups of organisms are influenced by forest loss in varying 
ways, I asked: 
 

• Is there a taxonomic signal in the relationships between forest loss and population 
change, richness change and turnover? 

 
I thus visualised taxon-specific associations with forest loss. 
 
Results 
I did not find distinct taxonomic patterning in the relationships between population change, 
biodiversity change and forest cover loss (Appendix 4.11a-c). The sampling effort and 
time series duration differed across taxa. Birds, trees and mammals were better sampled 

with a greater number of longer time series (Appendix 4.11d-e). Filling in taxonomic gaps 
in population and biodiversity monitoring can provide further insights into potential taxon-
specific responses to land-use change. Note that while there were no directional 
relationships between the amount of forest loss and population and biodiversity trends 
across taxa, I did find clear differences among taxa in the pace at which the abundance 
and biodiversity changed following contemporary peak forest loss (see temporal lags 
section and Figure 5 in Chapter 4 for further detail). 
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Appendix 4.11. Lack of taxonomic patterning in the relationships between forest 
loss, population and biodiversity change. Plots show population change, richness 
change and turnover over time across different taxa (a-c) for time series that experienced 
at least 5% loss in forest cover across their duration. Forest loss was calculated using the 
LUH database as proportions bounded between zero and one across the same duration 
as that of each individual time series. Population d and biodiversity e monitoring duration 
varied across taxa, with taxa like birds and plants usually monitored for longer time 
periods.  
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 6. Cross-species patterns 
 
Methods 
The patterns I detect in how forest loss influences populations and ecological 
assemblages can also be influenced by the types of species which are represented. To 
test this, I asked: 
 

• What are the threats commonly associated with the species represented in the 
population and biodiversity time series I studied? 

• What proportion of the species represented in the population and biodiversity time 
series are classified as invasive or non-native? 

• Are rare species more likely to respond negatively to forest loss compared to 
common species? 

 
I extracted species’ threats from the IUCN Red List Database (IUCN, 2017) using the 
package rredlist v0.5.0 (Chamberlain, 2017) for the 755 species for which global threat 
assessments were available. Alien and invasive categorizations were available from the 
Living Planet Database. To classify the species from the BioTIME database, I used the 
Global Invasive Species Database (Invasive Species Specialist Group, 2019). I tested if 
rare species (based on species’ geographic range, mean population size and habitat 
specificity) were more likely to be negatively influenced by forest loss by including a forest 
loss * rarity metric interaction term in my models. For full details on methods to determine 
rarity, see Chapter 3. Similar post-hoc analysis was not possible for the biodiversity time 
series because habitat preference and rarity data were not available for many of the 
species included in the BioTIME database.   
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Results 
The dominant threats to the species represented in the databases were related to land-
use change (Appendix 4.12a). A very small proportion (around 1%) of the species 
represented in my analyses were classified as invasive or alien (based on the Global 
Invasive Species Database, (Invasive Species Specialist Group, 2019), with around 3% 
of species identified as only morphospecies for which I cannot attribute species status 
(Appendix 4.12b). Because such a small proportion of species were alien or invasive, I 
was not able to test if such species respond differently to forest loss. I found that 
regardless of whether species were rare or common, they experienced the full spectrum 
of forest loss effects (Appendix 4.12c-h). Species’ geographic range, mean population 

size and habitat specificity were poor predictors of population responses to forest loss 
over time (Appendices 4. 12c-h, 4.19).  
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Appendix 4.12. Many of the species I studied face threats related to land-use 
change, but there were no distinct responses to forest loss based on species’ rarity 
and very few of the species were classified as invasive or alien. All species in the 
Living Planet Database were identified to the species level, whereas in the BioTIME 
Database, 7% of species were recorded as morphospecies. I found that regardless of 
whether species were rare or common, they experienced the full spectrum of forest loss 
effects (see Appendix 4.19 for full model outputs).  
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 7. Scale influences 
 
Methods 
Ecological processes, including changes in biodiversity like richness increases and 
decreases, vary across spatial scales (Chase et al., 2019). In my analyses, I focused on 
local-scale population and biodiversity change. However, there are also scale influences 
in the driver which I tested, and specifically the scale over which forest cover change is 
calculated, as well as the resolution of the forest databases themselves. To test for the 
influence of scale in calculating forest cover change and subsequently, the relationships 
between population change, biodiversity change and shifts in forest cover, I asked: 

 

• Does the amount of detected forest cover change vary depending on data 
sources? 

• Does the spatial scale over which I quantify forest cover change influence its 
detected effects on population and biodiversity change? 
 

I tested how the amount of detected forest loss varies across two remote-sensing 
databases (GFC and ESA Landcover) for the time period over which they overlap (2000-
2015). Uncertainty in forest cover estimates derived from the LUH database increases for 
records further back in time. On a European scale, I was able to compare historic land 
cover estimates as quantified by the LUH and KK09 databases. Additionally, I visualised 

the relationships between population change, richness change, turnover and forest loss 
across different spatial scales of calculating forest loss – from 10 to 500 km2. Note that 
the scale over which I calculated biodiversity change (~96 km2) remained constant as this 
is the scale for which I rarefied the biodiversity data based on study area (i.e., larger 
studies were split into smaller ones, but samples from different studies were never mixed 
together, for more details see Blowes et al. (2019). 
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Results 
I found frequent mismatches in the magnitude of detected forest cover change detected 
at sites, but the broad variation in forest cover change across sites was similar 
(Appendices 5.4A-D, 4.5). I found that historic land cover estimates extracted from the 
LUH and KK09 databases were broadly consistent (Appendix 4.13f). I found low 
correspondence between the GFC and ESA Landcover databases. While GFC focuses 
exclusively on forests, ESA Landcover provides estimates for 37 different land cover 
classes. Thus, the potential explanations for the mismatches between the two databases 
include: 1) different definitions of a forest, 2) a ten-fold difference in resolution (30 m for 
GFC versus 300 m for ESA Landcover, and 3) differences in satellite data sources and 

processing methods. Previous studies comparing field observations to estimates from 
remote-sensing databases have found that the GFC performs better relative to other 
remote-sensing data sources (Andreacci & Marenzi, 2020), and I found that the GFC 
detects the most forest cover change (Appendix 4.13a), so I focused out magnitude of 
forest cover change analyses on estimates derived from the GFC.  
 
In my analyses, I focused on using the Land Use Harmonization database because it 
includes the longest possible temporal records of forest loss, and the GFC database, 
because it provides the highest spatial resolution for forest cover change currently 
available. My findings of both positive and negative associations of population and 
biodiversity change with forest cover change were broadly consistent regardless of the 
database with which forest cover was calculated. 
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Appendix 4.13. Population, biodiversity and forest cover databases cover different 
periods in time and the amount of detected forest loss increases with higher 
resolution of the spatial data. Note that the LUH database starts in 850 and the first 
record in BioTIME is in 1858. The forest databases used to calculate forest loss were the 
LUH database, the ESA Landcover database and the GFC database. Direct comparisons 
of detected forest loss and gain across sites are shown in b-e. I derived historic 
anthropogenic land cover in Europe from the KK09 database (Kaplan et al., 2009) and 
primary forest cover derived from the LUH database (Hurtt et al., 2011) for the first year 
of each population time series for the same sized cells (~96 km2) and combined them. 
This combined measure is shown on the x-axis of plot f. It is possible for the two estimates 

to be below one (suggesting at a given location there is some land under anthropogenic 
land use, some primary forest, but also another land cover type). Estimates above a value 
of one indicate instances where there might be an error in either of the two databases as 
the combined area of anthropogenic and forest cover in a cell should sum to one. 
 
The cell size over which I calculated forest cover change (from 10 km2 to 500 km2) did 
not influence overall findings, as detected forest cover change scaled proportionately with 
cell size across locations and the slopes of model comparisons with richness change and 
turnover remained centred on zero (Appendix 4.14).  
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Appendix 4.14. The detected forest loss increased with larger cell sizes, but 
regardless of the cell size, I found both positive and negative richness trends 
associated with forest loss. Figure shows amount of forest cover loss based on GFC 
database (Hansen et al., 2013) across different cell sizes and how that relates to richness 
change slopes and turnover (Jaccard’s dissimilarity). Boxplots show that the mean 
richness slopes and turnover did not vary substantially depending on the scale of 
calculating forest loss.  
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8. Landscape context 
 
Methods 
Landscape context, i.e., how much forest cover there is across larger spatial scales 
surrounding the location of each time series, can mediate the effects of forest loss on 
populations and biodiversity over time. Additionally, places where forests are the 
dominant habitat type might support more forest specialists (Betts et al., 2017). 
Populations and biodiversity are also always variable over time following natural 
community processes (Gotelli et al., 2017). Thus, I compared population and biodiversity 
trends on sites with intact and dominating forest cover with previously intact but now 

disturbed sites which have experienced forest loss. I asked: 
 

• Does the landscape context of forest loss (amount of forested area in 500 km2 cell 
around each time series location) influence the relationships between forest loss 
and population and biodiversity change? 

• Does the type of forest (primary vs. secondary forest) influence the amount of 
detected forest cover change? 

• What are the effects of forest loss on population change, richness change and 
turnover in forest-dominated sites? 
 

I included an interaction term forest loss * wider landscape forest cover in my models of 
population declines and richness losses versus magnitude of forest loss over the whole 
duration of each time series to test if higher forest cover in the wider landscape buffers 
the localised effects of forest loss. I visualised the relationship between losses in primary 
and secondary forest cover. I filtered for the time series where forests were the dominant 
habitat type at the start of the monitoring and categorised them as having remained 

relatively intact over time (<5% forest loss) or disturbed (>5% forest loss). I then visualised 
the distributions of population change, richness change and turnover across those two 
categories. 
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Results 
My findings were not influenced by the type of forest cover (primary vs secondary), as 
loss of secondary forest cover scaled proportionately to primary forest loss (Appendix 
4.15a-c). Landscape context did not influence the relationship between forest cover 
change and population declines (Appendix 4.15d-e), but richness losses were lower when 
the landscape-scale forest cover was higher. 
 
I found that in forest-dominated sites, where past disturbances were likely less frequent, 
declines in species’ abundance were more frequent than increases, whereas richness 
change and turnover did not show directional trends (Appendix 4.16). The wide variety of 

richness trends and turnover on intact forested sites could potentially be explained by the 
presence of other global change drivers instead of forest loss present there, such as 
climate change or pollution. 

 
Appendix 4.15. The amount of forest cover gain and loss broadly increases as tree 
cover within a 500 km2 cell around each site increase, and the effects of forest loss 
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on species richness over time were less negative in places with higher tree cover. 
I calculated tree cover using the GFC database (a-b). Secondary forest loss scaled 
positively with primary forest loss (as captured by the LUH database). Forest loss on c 
was measured as a proportion between zero and one. I did not detect a significant 
interaction between tree cover and forest loss on population declines. See Appendix 4.19 
for full model outputs. 
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Appendix 4.16. Forest-dominated sites which experienced forest loss were 
associated with more population declines relative to intact forested sites. The 
forest-dominated sites were predominantly in North America and Europe. x-axes on b-d 
show population trends (μ), slopes of richness change, and turnover (Jaccard’s 
dissimilarity). Insets on c and d show a comparison of North American time series where 
for the “no forest loss” category I bootstrapped samples (we took the means of 100 
random selections of the 282 available richness slopes) to achieve a more balanced 
sample distribution between the two categories.  
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Methods 
Land-use change can lead to shifts in the dominant habitat type across ecosystems. Such 
habitat transitions from one state to another could represent a drastic change influencing 
the persistence of species and ecological communities (Betts et al., 2017). Thus, I asked: 
 

• How do habitat transitions relate to population change, richness change and 
turnover? 
 

To quantify habitat conversion for locations where I had population and biodiversity 
monitoring data, I used the MODIS Landcover database (Channan et al., 2014). The 
MODIS database has a resolution of 500 m, and it uses satellite-derived reflectance data 
to classify land cover around the world. To determine the types of habitat conversion 
between 2000 and 2013 (the time span of available MODIS data) across all monitoring 
locations, I calculated the dominant land cover type at the start and end of each population 
and biodiversity time series and split time series into categories such as “no habitat 

conversion” and “grassland to woody savannah”. I focused on the eight most frequent 
types of habitat conversion. 
 
To determine the influence of the type of habitat transitions on population and biodiversity 
change, I compared the distributions of population and biodiversity change across 
transitions types (from primary forest to secondary forest, from primary forest to non-
natural habitat, and from secondary forest to non-natural habitat, to which I refer as habitat 
conversion). Small sample sizes (on average 10 time series per transition type) precluded 
statistical analysis, thus I report findings from a visual inspection of distributions of 
population and biodiversity change across habitat conversion types.  
 
Results 
In approximately 5% of monitored time series, forest loss consisted of a conversion in the 
dominant habitat type (e.g., from primary forest to urban areas). Habitat conversions 
corresponded with both gains and losses in population abundance and species richness 



Appendix 4 

331 
 

(Appendix 4.17a-b, d-e). Turnover was high when primary forests were converted to 
agricultural and urban areas and to secondary forests (Appendix 4.17c), as well as when 
sites underwent transitions in dominant habitat types (Appendix 4.17f). While land-use 
and habitat transitions were not common across the time series I studied, when they did 
occur, they were associated with shifts in populations and biodiversity, particularly 
replacement of species (turnover). 

 
Appendix 4.17. Population and biodiversity change following land-use transitions 
as detected by the LUH database (Hurtt et al., 2011) and following habitat 
transitions as detected by the MODIS Landcover database (Channan et al., 2014). 
Population and biodiversity change following land-use and habitat transitions included 
instances of declines, increases and no net changes across sites. Both land-use and 
habitat transitions were associated with high turnover (e.g., around 50% of original 
species replaced by the end of the time series which has experienced the transition). 
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Distributions show μ values for population change, posterior means (slopes) for richness 
change and Jaccard’s dissimilarity for turnover under different habitat conversions. The 
y-axis refers to the probability density function for the kernel density estimation per unit 
on the x-axis, and the distributions are relative to one another. Numbers in plots indicate 
number of time series for each category.  
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Appendix 4.18. Number of time series in this study across woody biomes, as defined by 
Olson and Dinerstein (Olson & Dinerstein, 2002). 

Database Biome Number of time 
series 

Living Planet Database 
(total 2729 time series) 

Boreal forests/taiga 919 

Deserts and xeric shrublands 20 

Flooded grasslands and savannas 3 

 Mediterranean forests woodlands and scrub 128 

 Montane grasslands and shrublands 2 

 Temperate broadleaf and mixed forests 853 

 Temperate coniferous forests 301 

 Temperate grasslands savannas and shrublands 241 

 Tropical and subtropical coniferous forests 1 

 Tropical and subtropical dry broadleaf forests 5 

 Tropical and subtropical grasslands savannas and 
shrublands 70 

 Tropical and subtropical moist broadleaf forests 58 

 Tundra 128 

BioTIME  
(total 3361 time series) 

Boreal forests/taiga 232 

Deserts and xeric shrublands 45 

Flooded grasslands and savannas 4 

 Mangroves 5 

 Mediterranean forests woodlands and scrub 49 

 Montane grasslands and shrublands 69 

 Temperate broadleaf and mixed forests 2,020 

 Temperate conifer forests 695 

 Temperate grasslands savannas and shrublands 147 

 Tropical and subtropical dry broadleaf forests 3 

 Tropical and subtropical grasslands savannas and 
shrublands 23 
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 Tropical and subtropical moist broadleaf forests 57 

 Tundra 12 
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Appendix 4.19. Model outputs for all analyses. Scaled variables were mean centred on zero. 
Term names starting with “b” refer to fixed effects and term names starting with “r” refer to 
random intercepts. Sigma indicates the residual variance. For turnover models, “zoi” refers 
to the probability of being a zero or a one, “coi” refers to the conditional probability of being a 
one (given an observation is a zero or a one), and “phi” is the precision parameter of zero-one 
inflated beta distribution. “Scaled” indicates variables which were centred with a mean of zero. 
Numbers (N) refer to the sample size for each model and are presented as number of time 
series out of the overall number of population (2729) and biodiversity (3361) time series I 
analysed. The sample sizes for each model were determined based on the aim of the model 
(e.g., testing specifically time series where populations declined, and the sites experienced 
more than 5% forest loss). See methods for details on analyses. The differences in sample size 
for the different statistical models stem from the nature of each research question and data 
availability. See section 4.3 Methods in Chapter 4 for details of models. 

Model Term Estimat
e 

Std. 
error 

Lower 
95% CI 

Upper 
95% CI 

Population declines 
before/after forest loss 
(N = 467 / 2,729) 

b.intercept -0.040 0.011 -0.061 -0.025 

b.after.forest.loss -0.037 0.002 -0.041 -0.033 

b.duration.scaled 0.010 0.001 0.008 0.012 

sigma 0.033 0.001 0.032 0.035 
 biome.boreal.forests.taiga 0.016 0.011 0 0.036 
 biome.flooded.grasslands.and.savannas -0.036 0.033 -0.083 0.006 
 biome.mediterranean.forests.woodlands.and.scrub 0.013 0.021 -0.017 0.056 
 biome.temperate.broadleaf.and.mixed.forests 0.008 0.011 -0.009 0.027 

 biome.temperate.coniferous.forest
s 0.009 0.011 -0.008 0.029 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.008 0.012 -0.011 0.031 

 biome.tropical.and.subtropical.coniferous.forests -0.004 0.016 -0.032 0.027 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.012 0.014 -0.038 0.009 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.026 0.023 -0.060 0.006 

 biome.tundra 0.015 0.013 -0.003 0.036 

b.intercept 0.034 0.004 0.028 0.041 
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Population increases 
before/after forest loss 
(N = 343 / 2,729) 

b.after.forest.loss 0.022 0.003 0.017 0.027 

b.duration.scaled -0.010 0.002 -0.013 -0.008 

sigma 0.038 0.001 0.036 0.040 

biome.boreal.forests.taiga -0.002 0.003 -0.010 0.002 
 biome.flooded.grasslands.and.savannas 0 0.004 -0.008 0.012 
 biome.mediterranean.forests.woodlands.and.scrub -0.001 0.004 -0.013 0.008 
 biome.temperate.broadleaf.and.mixed.forests 0 0.003 -0.006 0.006 
 biome.temperate.coniferous.forests -0.001 0.003 -0.010 0.005 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.001 0.004 -0.005 0.012 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.001 0.004 -0.007 0.013 

 biome.tundra 0 0.003 -0.008 0.008 

Population change 
before/during/after peak 
deforestation 
(N = 1,941 / 2,729) 

b.intercept 0.002 0.006 -0.010 0.011 

b.periodduring -0.007 0.003 -0.012 -0.001 

b.after.forest.loss -0.009 0.004 -0.015 -0.003 
 b.duration.scaled -0.006 0.002 -0.009 -0.003 
 sigma 0.057 0.001 0.056 0.059 
 biome.boreal.forests.taiga 0.002 0.007 -0.009 0.014 
 biome.deserts.and.xeric.shrublands -0.030 0.012 -0.049 -0.012 
 biome.flooded.grasslands.and.savannas -0.011 0.017 -0.040 0.016 
 biome.mediterranean.forests.woodlands.and.scrub 0.010 0.008 -0.003 0.023 
 biome.montane.grasslands.and.shrublands 0.013 0.016 -0.012 0.039 
 biome.temperate.broadleaf.and.mixed.forests 0.009 0.007 -0.002 0.020 
 biome.temperate.coniferous.forests 0.001 0.007 -0.011 0.013 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.004 0.008 -0.017 0.009 

 biome.tropical.and.subtropical.coniferous.forests 0.003 0.016 -0.023 0.033 
 biome.tropical.and.subtropical.dry.broadleaf.forests -0.022 0.015 -0.048 0.001 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.003 0.008 -0.016 0.010 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.018 0.009 0.004 0.032 

 biome.tundra 0.011 0.008 -0.002 0.025 
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Richness losses 
before/after peak 
deforestation 
(N = 188 / 3,361) 

b.intercept -0.100 0.033 -0.163 -0.043 

b.after.forest.loss -0.018 0.011 -0.036 -0.001 

b.duration.scaled 0.035 0.006 0.026 0.044 

sigma 0.097 0.004 0.091 0.103 
 biome.boreal.forests.taiga 0.032 0.042 -0.039 0.105 
 biome.deserts.and.xeric.shrublands 0.007 0.039 -0.065 0.071 
 biome.mediterranean.forests.woodlands.and.scrub -0.026 0.046 -0.105 0.048 
 biome.montane.grasslands.and.shrublands -0.146 0.076 -0.268 -0.031 
 biome.temperate.broadleaf.and.mixed.forests -0.035 0.033 -0.091 0.029 
 biome.temperate.conifer.forests 0.053 0.037 -0.011 0.116 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.056 0.035 0 0.124 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.048 0.059 -0.041 0.154 

Richness gains 
before/after peak 
deforestation 
(N = 266 / 3,361) 

b.intercept 0.030 0.005 0.020 0.039 

b.after.forest.loss -0.002 0.001 -0.004 0 

b.duration.scaled 0.002 0.001 0 0.003 

sigma 0.016 0.001 0.015 0.017 
 biome.boreal.forests.taiga 0.004 0.007 -0.008 0.015 
 biome.deserts.and.xeric.shrublands 0.010 0.008 -0.002 0.024 
 biome.mediterranean.forests.woodlands.and.scrub 0.004 0.009 -0.009 0.020 
 biome.temperate.broadleaf.and.mixed.forests 0 0.005 -0.010 0.010 
 biome.temperate.conifer.forests -0.005 0.006 -0.016 0.004 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.013 0.006 -0.024 -0.003 

Turnover before/after 
peak deforestation 
(N = 389 / 3,361) 

b.intercept -1.009 0.095 -1.219 -0.831 

b.zoi.intercept -1.266 0.076 -1.392 -1.146 

b.coi.intercept -2.553 0.235 -2.937 -2.190 

b.after.forest.loss -0.036 0.043 -0.105 0.031 

b.duration.scaled -0.121 0.044 -0.195 -0.052 
 phi 13.448 0.684 12.352 14.551 
 biome.boreal.forests.taiga 0.211 0.174 -0.026 0.493 
 biome.deserts.and.xeric.shrublands 0.210 0.171 -0.023 0.500 
 biome.mediterranean.forests.woodlands.and.scrub -0.088 0.168 -0.450 0.164 
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 biome.montane.grasslands.and.shrublands -0.001 0.204 -0.467 0.486 
 biome.temperate.broadleaf.and.mixed.forests -0.042 0.094 -0.214 0.165 
 biome.temperate.conifer.forests 0.010 0.104 -0.165 0.243 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.069 0.104 -0.273 0.133 

 biome.tropical.and.subtropical.dry.broadleaf.forests -0.142 0.225 -0.671 0.160 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.050 0.172 -0.434 0.268 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.005 0.194 -0.463 0.432 

Population change and 
magnitude of peak forest 
loss 
(N = 618 / 2,729) 

b.intercept 0.028 0.006 0.017 0.039 

b.max.loss.scaled -0.002 0.002 -0.005 0.001 

b.duration.scaled -0.021 0.002 -0.024 -0.018 

sigma 0.043 0.001 0.041 0.045 
 biome.boreal.forests.taiga -0.001 0.006 -0.013 0.010 
 biome.flooded.grasslands.and.savannas 0.009 0.014 -0.010 0.043 
 biome.mediterranean.forests.woodlands.and.scrub -0.001 0.010 -0.024 0.022 
 biome.temperate.broadleaf.and.mixed.forests 0.008 0.007 -0.002 0.021 
 biome.temperate.coniferous.forests 0.001 0.007 -0.011 0.014 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0 0.008 -0.016 0.015 

 biome.tropical.and.subtropical.coniferous.forests 0.001 0.011 -0.023 0.027 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.017 0.018 -0.049 0.005 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0 0.011 -0.025 0.024 

 biome.tundra -0.002 0.008 -0.017 0.011 

Richness change and 
magnitude of peak forest 
loss 
(N = 386 / 3,361) 

b.intercept 0.028 0.005 0.019 0.040 

b.max.loss.scaled -0.003 0.001 -0.005 -0.001 

b.duration.scaled -0.002 0.002 -0.006 0.001 

sigma 0.027 0.001 0.025 0.028 

biome.boreal.forests.taiga 0.007 0.008 -0.003 0.021 
 biome.deserts.and.xeric.shrublands -0.005 0.007 -0.020 0.006 
 biome.mediterranean.forests.woodlands.and.scrub 0 0.006 -0.014 0.012 
 biome.montane.grasslands.and.shrublands 0.013 0.018 -0.006 0.058 
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 biome.temperate.broadleaf.and.mixed.forests -0.001 0.005 -0.013 0.007 
 biome.temperate.conifer.forests -0.003 0.006 -0.016 0.005 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.006 0.006 -0.019 0.002 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.002 0.009 -0.027 0.015 

Turnover and magnitude 
of peak forest loss 
(N = 386 / 3,361) 

b.intercept 0.220 0.115 0.013 0.425 

b.max.loss.scaled 0.005 0.007 -0.006 0.016 

b.duration.scaled -0.010 0.004 -0.017 -0.003 

sigma 0.091 0.003 0.087 0.096 
 biome.boreal.forests.taiga -0.153 0.117 -0.355 0.059 
 biome.deserts.and.xeric.shrublands -0.121 0.118 -0.327 0.087 
 biome.mediterranean.forests.woodlands.and.scrub -0.070 0.118 -0.278 0.138 
 biome.montane.grasslands.and.shrublands 0.699 0.141 0.473 0.957 
 biome.temperate.broadleaf.and.mixed.forests -0.125 0.115 -0.333 0.080 
 biome.temperate.conifer.forests -0.122 0.116 -0.322 0.090 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.125 0.116 -0.333 0.080 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.004 0.142 -0.223 0.254 

Population declines and 
overall forest loss 
(N = 470 / 2,729) 

b.intercept -0.052 0.003 -0.062 -0.047 

b.forest.loss.scaled -0.001 0.001 -0.003 0.001 

b.duration.scaled 0.012 0.001 0.009 0.014 

sigma 0.026 0.001 0.025 0.028 

biome.boreal.forests.taiga 0.001 0.003 -0.004 0.013 

biome.deserts.and.xeric.shrublands -0.003 0.007 -0.031 0.007 
 biome.mediterranean.forests.woodlands.and.scrub -0.001 0.005 -0.018 0.007 
 biome.temperate.broadleaf.and.mixed.forests 0 0.003 -0.006 0.010 
 biome.temperate.coniferous.forests 0.001 0.004 -0.006 0.012 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.001 0.004 -0.007 0.012 

 biome.tropical.and.subtropical.coniferous.forests -0.001 0.005 -0.021 0.011 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.003 0.006 -0.024 0.006 
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 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.002 0.005 -0.008 0.022 

 biome.tundra 0.006 0.009 -0.003 0.024 

Population increases 
and overall forest loss 
(N = 369 / 2,729) 

b.intercept 0.047 0.003 0.042 0.054 

b.forest.loss.scaled 0 0.002 -0.003 0.002 

b.duration.scaled -0.012 0.002 -0.015 -0.009 

sigma 0.029 0.001 0.027 0.031 
 biome.boreal.forests.taiga 0 0.002 -0.008 0.006 
 biome.mediterranean.forests.woodlands.and.scrub 0.001 0.003 -0.005 0.017 
 biome.temperate.broadleaf.and.mixed.forests 0 0.002 -0.008 0.004 
 biome.temperate.coniferous.forests 0 0.002 -0.009 0.006 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0 0.002 -0.010 0.005 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.001 0.003 -0.017 0.006 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.001 0.003 -0.006 0.023 

 biome.tundra -0.001 0.003 -0.011 0.005 

Population declines and 
forest cover loss (2000-
2016) 
(N = 532 / 2,729) 

b.intercept -0.052 0.002 -0.057 -0.046 

b.forest.loss.scaled -0.002 0.001 -0.004 0.001 

b.duration.scaled 0.012 0.001 0.009 0.014 

sigma 0.027 0.001 0.025 0.028 

biome.boreal.forests.taiga 0 0.002 -0.006 0.006 

biome.mediterranean.forests.woodlands.and.scrub 0 0.003 -0.007 0.009 
 biome.temperate.broadleaf.and.mixed.forests 0 0.002 -0.006 0.005 
 biome.temperate.coniferous.forests 0.001 0.003 -0.004 0.009 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0 0.003 -0.008 0.009 

 biome.tropical.and.subtropical.dry.broadleaf.forests -0.001 0.003 -0.014 0.008 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.001 0.004 -0.007 0.017 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.003 0.004 -0.017 0.003 

b.intercept 0.051 0.003 0.047 0.057 

b.forest.loss.scaled -0.001 0.002 -0.004 0.002 
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Population increases 
and forest cover loss 
(2000-2016) 
(N = 411 / 2,729) 

b.duration.scaled -0.015 0.002 -0.018 -0.012 

sigma 0.032 0.001 0.030 0.034 

 biome.boreal.forests.taiga -0.002 0.003 -0.009 0.003 
 biome.deserts.and.xeric.shrublands 0 0.003 -0.009 0.008 
 biome.mediterranean.forests.woodlands.and.scrub 0 0.003 -0.009 0.006 
 biome.temperate.broadleaf.and.mixed.forests 0.001 0.002 -0.004 0.007 
 biome.temperate.coniferous.forests 0 0.003 -0.005 0.007 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.001 0.003 -0.006 0.009 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0 0.003 -0.006 0.011 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0 0.003 -0.008 0.008 

 biome.tundra 0 0.003 -0.011 0.007 

Population increases 
and forest cover gain 
(2000-2016) 
(N = 54 / 2,729) 

b.intercept 0.049 0.048 -0.064 0.266 

b.forest.gain.scaled -0.003 0.005 -0.012 0.005 

b.duration.scaled 0.002 0.012 -0.014 0.028 

sigma 0.027 0.003 0.023 0.032 
 biome.temperate.broadleaf.and.mixed.forests -0.005 0.049 -0.233 0.103 
 biome.temperate.coniferous.forests 0.019 0.062 -0.109 0.238 
 biome.tundra -0.013 0.045 -0.197 0.109 

Richness losses and 
overall forest loss 
(N = 201 / 3,361) 

b.intercept -0.036 0.005 -0.045 -0.027 

b.forest.loss.scaled 0.006 0.003 0.001 0.011 

b.duration.scaled 0.003 0.003 -0.002 0.008 
 sigma 0.039 0.002 0.036 0.042 
 biome.boreal.forests.taiga 0 0.005 -0.013 0.016 
 biome.deserts.and.xeric.shrublands 0.002 0.005 -0.008 0.015 
 biome.mediterranean.forests.woodlands.and.scrub 0 0.005 -0.015 0.012 
 biome.montane.grasslands.and.shrublands 0 0.005 -0.016 0.013 
 biome.temperate.broadleaf.and.mixed.forests 0 0.004 -0.009 0.009 
 biome.temperate.conifer.forests -0.004 0.006 -0.017 0.004 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.001 0.005 -0.013 0.010 
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 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.001 0.005 -0.012 0.017 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.001 0.006 -0.011 0.018 

Richness gains and 
overall forest loss 
(N = 156 / 3,361) 

b.intercept 0.045 0.009 0.026 0.063 

b.forest.loss.scaled 0.001 0.006 -0.009 0.009 

b.duration.scaled -0.015 0.006 -0.024 -0.006 
 sigma 0.063 0.004 0.057 0.068 
 biome.boreal.forests.taiga -0.002 0.014 -0.043 0.028 
 biome.deserts.and.xeric.shrublands 0.009 0.016 -0.013 0.049 
 biome.mediterranean.forests.woodlands.and.scrub -0.004 0.013 -0.040 0.019 
 biome.montane.grasslands.and.shrublands -0.003 0.013 -0.040 0.022 
 biome.temperate.broadleaf.and.mixed.forests -0.001 0.009 -0.020 0.020 
 biome.temperate.conifer.forests 0.013 0.017 -0.007 0.042 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.003 0.011 -0.026 0.019 

 biome.tropical.and.subtropical.dry.broadleaf.forests -0.003 0.014 -0.042 0.028 

Richness losses and 
forest cover loss (2000-
2016) 
(N = 493 / 3,361) 

b.intercept -0.070 0.012 -0.088 -0.048 

b.forest.loss.scaled 0.001 0.004 -0.005 0.006 

b.duration.scaled 0.027 0.004 0.021 0.033 

sigma 0.079 0.003 0.075 0.083 

biome.boreal.forests.taiga -0.012 0.016 -0.041 0.010 
 biome.deserts.and.xeric.shrublands 0.001 0.020 -0.039 0.043 
 biome.mediterranean.forests.woodlands.and.scrub 0.010 0.018 -0.019 0.044 
 biome.montane.grasslands.and.shrublands 0.006 0.020 -0.027 0.047 
 biome.temperate.broadleaf.and.mixed.forests -0.021 0.013 -0.043 0 
 biome.temperate.conifer.forests -0.004 0.012 -0.027 0.016 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.002 0.019 -0.037 0.033 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.003 0.020 -0.034 0.043 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.020 0.018 -0.008 0.048 

b.intercept 0.095 0.015 0.065 0.121 

b.forest.loss.scaled 0.012 0.006 0.002 0.022 
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Richness gains and 
forest cover loss (2000-
2016) 
(N = 377 / 3,361) 

b.duration.scaled -0.033 0.006 -0.042 -0.023 

sigma 0.114 0.004 0.108 0.122 

 biome.boreal.forests.taiga 0.044 0.028 0 0.087 
 biome.deserts.and.xeric.shrublands 0.004 0.027 -0.045 0.063 
 biome.flooded.grasslands.and.savannas -0.001 0.028 -0.066 0.050 
 biome.mediterranean.forests.woodlands.and.scrub -0.007 0.024 -0.056 0.033 
 biome.montane.grasslands.and.shrublands -0.011 0.028 -0.074 0.034 
 biome.temperate.broadleaf.and.mixed.forests 0.008 0.017 -0.019 0.041 
 biome.temperate.conifer.forests -0.006 0.016 -0.035 0.023 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.003 0.023 -0.039 0.048 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.014 0.029 -0.076 0.032 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.012 0.025 -0.065 0.028 

Richness losses and 
forest cover gain (2000-
2016) 
(N = 73 / 3,361) 

b.intercept -0.041 0.021 -0.074 0.003 

b.forest.gain.scaled 0.009 0.008 -0.004 0.022 

b.duration.scaled 0.027 0.009 0.012 0.042 

sigma 0.068 0.006 0.059 0.078 
 biome.boreal.forests.taiga 0.012 0.025 -0.028 0.072 
 biome.mediterranean.forests.woodlands.and.scrub 0.007 0.027 -0.044 0.074 
 biome.montane.grasslands.and.shrublands 0.004 0.027 -0.053 0.066 
 biome.temperate.broadleaf.and.mixed.forests -0.016 0.023 -0.064 0.017 
 biome.temperate.conifer.forests -0.025 0.028 -0.076 0.010 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.011 0.022 -0.025 0.061 

Richness gains and 
forest cover gain (2000-
2016) 
(N = 41 / 3,361) 

b.intercept 0.070 0.040 -0.001 0.133 

b.forest.gain.scaled 0.012 0.028 -0.035 0.056 

b.duration.scaled -0.075 0.026 -0.115 -0.031 

sigma 0.128 0.016 0.102 0.153 

biome.boreal.forests.taiga -0.014 0.042 -0.103 0.063 

biome.mediterranean.forests.woodlands.and.scrub -0.004 0.047 -0.108 0.093 

biome.montane.grasslands.and.shrublands -0.014 0.047 -0.120 0.064 
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 biome.temperate.broadleaf.and.mixed.forests 0.056 0.051 -0.011 0.138 
 biome.temperate.conifer.forests 0.014 0.042 -0.055 0.109 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.009 0.049 -0.124 0.081 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.017 0.046 -0.122 0.068 

Turnover and overall 
forest loss 
(N = 357 / 3,361) 

b.intercept -0.891 0.057 -0.993 -0.775 

b.zoi.intercept -1.652 0.138 -1.877 -1.434 

b.coi.intercept -1.533 0.296 -1.998 -1.044 

b.forest.loss.scaled -0.018 0.036 -0.076 0.042 
 b.duration.scaled -0.156 0.071 -0.265 -0.037 
 phi 12.932 1.013 11.364 14.591 
 biome.boreal.forests.taiga 0.011 0.057 -0.122 0.225 
 biome.deserts.and.xeric.shrublands -0.003 0.055 -0.164 0.133 
 biome.mediterranean.forests.woodlands.and.scrub -0.004 0.058 -0.194 0.153 
 biome.montane.grasslands.and.shrublands 0 0.058 -0.201 0.183 
 biome.temperate.broadleaf.and.mixed.forests -0.015 0.046 -0.142 0.080 
 biome.temperate.conifer.forests 0.010 0.049 -0.092 0.145 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.011 0.051 -0.091 0.160 

 biome.tropical.and.subtropical.dry.broadleaf.forests 0.001 0.057 -0.170 0.195 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.002 0.058 -0.159 0.202 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.017 0.064 -0.280 0.120 

Turnover and forest 
cover loss (2000-2016) 
(N = 870 / 3,361) 

b.intercept -0.524 0.104 -0.728 -0.373 

b.zoi.intercept -1.705 0.092 -1.841 -1.548 

b.coi.intercept -1.308 0.192 -1.636 -1.021 
 b.forest.loss.scaled -0.018 0.026 -0.061 0.023 
 b.duration.scaled -0.274 0.030 -0.321 -0.227 
 phi 7.298 0.361 6.747 7.886 
 biome.boreal.forests.taiga 0.054 0.116 -0.133 0.288 
 biome.deserts.and.xeric.shrublands 0.045 0.168 -0.228 0.498 
 biome.flooded.grasslands.and.savannas -0.063 0.172 -0.538 0.237 
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 biome.mediterranean.forests.woodlands.and.scrub 0.034 0.151 -0.267 0.384 
 biome.montane.grasslands.and.shrublands 0.001 0.171 -0.419 0.414 
 biome.temperate.broadleaf.and.mixed.forests 0.054 0.101 -0.094 0.274 
 biome.temperate.conifer.forests 0.135 0.122 -0.025 0.353 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.037 0.133 -0.191 0.330 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.196 0.251 -0.681 0.109 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.118 0.154 -0.422 0.082 

Turnover and forest 
cover gain (2000-2016) 
(N = 111 / 3,361) 

b.intercept -0.924 0.283 -1.616 -0.366 

b.zoi.intercept -1.382 0.216 -1.720 -1.033 

b.coi.intercept -0.552 0.348 -1.126 0.012 

b.forest.gain.scaled -0.150 0.090 -0.297 -0.010 

b.duration.scaled -0.393 0.093 -0.542 -0.234 

phi 10.729 1.647 8.198 13.400 
 biome.boreal.forests.taiga 0.411 0.431 -0.172 1.206 
 biome.mediterranean.forests.woodlands.and.scrub -0.002 0.499 -1.299 1.151 
 biome.montane.grasslands.and.shrublands 0 0.500 -1.179 1.365 
 biome.temperate.broadleaf.and.mixed.forests 0.067 0.286 -0.512 0.746 
 biome.temperate.conifer.forests 0.116 0.291 -0.377 0.897 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.637 0.658 -1.816 0.148 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts -0.019 0.334 -0.723 0.694 

Population change lags 
across taxa 
(N = 841 / 2,729) 

b.classmammals 6.684 1.369 4.429 8.916 

b.classbirds 9.136 1.087 7.193 10.944 

b.classamphibians 7.900 3.819 1.893 13.935 

b.classreptiles 2.357 2.679 -1.893 6.608 
 sigma 8.137 0.197 7.830 8.464 
 biome.boreal.forests.taiga -0.225 1.174 -2.260 1.695 
 biome.flooded.grasslands.and.savannas -0.648 2.476 -4.770 3.849 
 biome.mediterranean.forests.woodlands.and.scrub -1.707 2.168 -5.133 1.891 
 biome.temperate.broadleaf.and.mixed.forests -2.251 1.157 -4.068 -0.184 
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 biome.temperate.coniferous.forests -0.843 1.350 -3.148 1.348 

 biome.temperate.grasslands.savannas.and.shrubla
nds 5.008 1.398 2.702 7.240 

 biome.tropical.and.subtropical.coniferous.forests 0.033 2.682 -4.539 4.665 
 biome.tropical.and.subtropical.dry.broadleaf.forests -2.146 2.534 -6.585 2.077 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 2.528 1.746 -0.297 5.370 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 1.796 1.987 -1.342 5.050 

 biome.tundra -1.318 1.535 -3.772 1.270 

Richness change lags 
across taxa 
(N = 728 / 3,361) 

b.taxa.amphibians 9.691 2.065 6.142 13.057 

b.taxa.invertebrates -1.536 2.430 -5.687 2.300 

b.taxa.birds 8.370 2.029 4.812 11.588 
 b.taxa.mammals 6.937 2.407 3.041 11.038 
 b.taxa.otherplants 9.207 2.647 5.159 13.557 
 b.taxa.trees 17.389 2.526 13.379 21.693 
 sigma 4.585 0.122 4.387 4.779 
 biome.map.boreal.forests.taiga 2.581 2.879 -2.134 7.321 
 biome.map.deserts.and.xeric.shrublands -0.649 2.101 -3.914 2.991 
 biome.map.multiple.ecoregions -4.292 2.047 -7.532 -0.694 
 biome.map.temperate.broadleaf.and.mixed.forests 6.755 2.257 3.076 10.476 
 biome.map.temperate.coniferous.forest -6.899 2.614 -11.178 -2.646 

 biome.map.temperate.grasslands..savannas.and.s
hrublands 2.136 2.032 -1.121 5.758 

 biome.map.tropical.and.subtropical.dry.broadleaf.fo
rests -2.233 3.527 -7.837 3.680 

 biome.map.tropical.and.subtropical.grasslands..sav
annas.and.shrublands 4.577 2.564 0.213 8.611 

 biome.map.tropical.and.subtropical.moist.broadleaf
.forests -1.601 3.243 -7.023 3.518 

Turnover lags across 
taxa 
(N = 2,157 / 3,361) 

b.taxa.trees 18.493 2.876 13.600 23.276 

b.taxa.otherplants 12.571 2.724 7.872 17.129 

b.taxa.mammals 11.017 2.708 6.457 15.569 

b.taxa.birds 8.341 2.476 4.159 12.557 
 b.taxa.amphibians 10.042 2.500 6.098 14.552 
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 b.taxa.invertebrates 11.500 2.584 7.214 15.858 
 sigma 4.662 0.069 4.551 4.773 
 biome.map.boreal.forests.taiga -0.647 3.328 -6.219 4.794 
 biome.map.deserts.and.xeric.shrublands -3.153 2.494 -7.478 0.989 
 biome.map.multiple.ecoregions -5.443 2.465 -9.816 -1.399 
 biome.map.temperate.broadleaf.and.mixed.forests -4.990 2.504 -9.266 -0.785 
 biome.map.temperate.coniferous.forest -9.358 2.703 -13.802 -4.656 

 biome.map.temperate.grasslands..savannas.and.s
hrublands 3.057 2.485 -1.238 7.187 

 biome.map.tropical.and.subtropical.dry.broadleaf.fo
rests 4.616 4.323 -2.065 12.130 

 biome.map.tropical.and.subtropical.grasslands..sav
annas.and.shrublands 13.696 3.059 8.664 18.792 

 biome.map.tropical.and.subtropical.moist.broadleaf
.forests -6.432 2.801 -11.174 -1.780 

 biome.map.tundra 8.372 2.566 3.894 12.843 

Mammal generation time 
and population change 
temporal lags 
(N = 83 / 117) 

b.intercept 4.047 1.228 2.131 6.003 

b.generation.time 0.336 0.137 0.110 0.551 

sigma 6.448 0.494 5.687 7.251 

Bird generation time and 
population change 
temporal lags 
(N = 545 / 599) 

b_Intercept 6.976 1.151 4.683 9.228 

b_mean_gentime 0.842 0.223 0.411 1.291 

sigma 9.158 0.279 8.644 9.723 

Population declines, 
overall forest loss and 
species' geographic 
range 
(N = 359 / 2,729) 

b.intercept -0.060 0.012 -0.087 -0.042 

b.forest.loss.scaled -0.001 0.001 -0.003 0.002 

b.range.scaled -0.004 0.001 -0.006 -0.001 

b.duration.scaled 0.007 0.002 0.005 0.010 

b.forest.loss.scaled.range.scaled 0 0.002 -0.003 0.002 
 sigma 0.024 0.001 0.023 0.025 
 biome.boreal.forests.taiga 0.011 0.013 -0.008 0.038 
 biome.temperate.broadleaf.and.mixed.forests 0.007 0.012 -0.013 0.033 
 biome.temperate.coniferous.forests 0.003 0.012 -0.017 0.029 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.004 0.013 -0.018 0.031 

 biome.tropical.and.subtropical.coniferous.forests -0.011 0.019 -0.045 0.022 
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 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.044 0.030 -0.086 0.001 

 biome.tundra 0.026 0.016 0 0.051 

Population increases, 
overall forest loss and 
species' geographic 
range 
(N = 302 / 2,729) 

b.intercept 0.050 0.008 0.037 0.076 

b.forest.loss.scaled 0.002 0.002 -0.001 0.005 

b.range.scaled -0.001 0.002 -0.004 0.002 

b.duration.scaled -0.010 0.002 -0.014 -0.007 

b.forest.loss.scaled.range.scaled 0.001 0.002 -0.002 0.004 

sigma 0.029 0.001 0.027 0.031 
 biome.boreal.forests.taiga -0.003 0.008 -0.028 0.013 
 biome.mediterranean.forests.woodlands.and.scrub 0.009 0.013 -0.010 0.038 
 biome.temperate.broadleaf.and.mixed.forests -0.005 0.008 -0.032 0.008 
 biome.temperate.coniferous.forests -0.003 0.008 -0.030 0.011 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.004 0.009 -0.031 0.011 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.004 0.013 -0.042 0.019 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.035 0.046 -0.005 0.101 

 biome.tundra -0.009 0.013 -0.039 0.006 

Population declines, 
overall forest loss and 
species' mean 
population size 
(N = 36 / 2,729) 

b.intercept 0.014 0.041 -0.050 0.082 

b.forest.loss.scaled 0.020 0.027 -0.022 0.066 

b.meanpop.scaled 0.031 0.044 -0.044 0.099 

b.duration.scaled 0.031 0.008 0.019 0.044 

b.forest.loss.scaled.meanpop.scaled 0.035 0.049 -0.045 0.115 
 sigma 0.040 0.006 0.031 0.050 
 biome.boreal.forests.taiga -0.005 0.024 -0.055 0.036 
 biome.deserts.and.xeric.shrublands -0.014 0.026 -0.067 0.025 
 biome.mediterranean.forests.woodlands.and.scrub -0.016 0.023 -0.056 0.018 
 biome.temperate.broadleaf.and.mixed.forests -0.015 0.018 -0.046 0.012 
 biome.temperate.coniferous.forests 0.031 0.030 -0.009 0.079 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.010 0.020 -0.050 0.021 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.005 0.020 -0.046 0.030 
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 biome.tundra 0.037 0.032 -0.007 0.083 

Population increases, 
overall forest loss and 
species' mean 
population size 
(N = 43 / 2,729) 

b.intercept 0.038 0.022 0.002 0.077 

b.forest.loss.scaled 0.009 0.009 -0.005 0.023 

b.meanpop.scaled 0.091 0.044 0.012 0.158 

b.duration.scaled -0.025 0.010 -0.041 -0.010 

b.forest.loss.scaled.meanpop.scaled 0.089 0.047 0.011 0.163 
 sigma 0.049 0.006 0.040 0.059 
 biome.boreal.forests.taiga 0 0.015 -0.036 0.036 
 biome.mediterranean.forests.woodlands.and.scrub 0.006 0.014 -0.017 0.040 
 biome.temperate.broadleaf.and.mixed.forests 0 0.011 -0.024 0.024 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.009 0.017 -0.055 0.016 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.001 0.014 -0.026 0.041 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.006 0.015 -0.019 0.050 

 biome.tundra -0.007 0.014 -0.045 0.013 

Population declines, 
overall forest loss and 
species' habitat 
specificity 
(N = 376 / 2,729) 

b.intercept -0.054 0.004 -0.065 -0.047 

b.forest.loss.scaled -0.001 0.002 -0.003 0.002 

b.habspec.scaled -0.003 0.001 -0.006 -0.001 

b.duration.scaled 0.012 0.002 0.010 0.015 

b.forest.loss.scaled.habspec.scaled 0 0.002 -0.002 0.003 
 sigma 0.026 0.001 0.025 0.028 
 biome.boreal.forests.taiga 0.002 0.004 -0.006 0.013 
 biome.deserts.and.xeric.shrublands -0.006 0.011 -0.035 0.007 
 biome.mediterranean.forests.woodlands.and.scrub -0.001 0.006 -0.018 0.012 
 biome.temperate.broadleaf.and.mixed.forests 0 0.004 -0.007 0.011 
 biome.temperate.coniferous.forests -0.001 0.005 -0.011 0.009 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.001 0.005 -0.009 0.014 

 biome.tropical.and.subtropical.coniferous.forests -0.002 0.008 -0.025 0.013 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.006 0.009 -0.028 0.006 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.004 0.008 -0.009 0.027 
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 biome.tundra 0.012 0.012 -0.002 0.029 

Population increases, 
overall forest loss and 
species' habitat 
specificity 
(N = 316 / 2,729) 

b.intercept 0.047 0.003 0.041 0.054 

b.forest.loss.scaled 0.001 0.002 -0.002 0.004 

b.habspec.scaled -0.003 0.002 -0.007 0 

b.duration.scaled -0.011 0.002 -0.014 -0.008 

b.forest.loss.scaled.habspec.scaled 0.002 0.003 -0.002 0.006 

sigma 0.029 0.001 0.027 0.031 
 biome.boreal.forests.taiga 0 0.003 -0.009 0.006 
 biome.mediterranean.forests.woodlands.and.scrub 0.002 0.004 -0.004 0.020 
 biome.temperate.broadleaf.and.mixed.forests -0.001 0.003 -0.009 0.004 
 biome.temperate.coniferous.forests 0 0.003 -0.010 0.006 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.001 0.003 -0.011 0.006 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.001 0.004 -0.017 0.006 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.002 0.005 -0.007 0.024 

 biome.tundra 0 0.003 -0.012 0.007 

Population declines, 
overall forest loss in the 
tropics and elsewhere 
(N = 470 / 2,729) 

b.intercept -0.050 0.003 -0.057 -0.044 

b.forest.loss.scaled -0.002 0.001 -0.004 0 

b.tropicaltrue -0.074 0.034 -0.127 -0.018 

b.duration.scaled 0.008 0.002 0.005 0.010 
 b.forest.loss.scaled.tropicaltrue -0.032 0.029 -0.078 0.014 
 sigma 0.026 0.001 0.024 0.027 
 biome.boreal.forests.taiga 0.001 0.003 -0.005 0.009 
 biome.deserts.and.xeric.shrublands -0.002 0.006 -0.022 0.009 
 biome.mediterranean.forests.woodlands.and.scrub -0.002 0.005 -0.017 0.006 
 biome.temperate.broadleaf.and.mixed.forests -0.001 0.003 -0.008 0.005 
 biome.temperate.coniferous.forests 0 0.003 -0.008 0.007 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0.001 0.004 -0.006 0.013 

 biome.tropical.and.subtropical.coniferous.forests -0.001 0.005 -0.018 0.009 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands -0.001 0.004 -0.014 0.009 
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 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.003 0.006 -0.007 0.023 

 biome.tundra 0.004 0.006 -0.003 0.018 

Population increases, 
overall forest loss in the 
tropics and elsewhere 
(N = 369 / 2,729) 

b.intercept 0.049 0.004 0.044 0.061 

b.forest.loss.scaled 0.001 0.002 -0.002 0.003 

b.tropicaltrue -0.025 0.010 -0.041 -0.009 

b.duration.scaled -0.015 0.002 -0.018 -0.012 

b.forest.loss.scaled.tropicaltrue -0.009 0.005 -0.018 -0.001 

sigma 0.029 0.001 0.027 0.031 
 biome.boreal.forests.taiga 0 0.003 -0.012 0.006 
 biome.mediterranean.forests.woodlands.and.scrub 0.002 0.005 -0.005 0.020 
 biome.temperate.broadleaf.and.mixed.forests -0.002 0.004 -0.015 0.004 
 biome.temperate.coniferous.forests -0.001 0.004 -0.013 0.006 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.001 0.004 -0.014 0.006 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0 0.004 -0.012 0.015 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.004 0.007 -0.006 0.039 

 biome.tundra -0.002 0.005 -0.019 0.004 

Population declines, 
overall forest loss and 
starting tree cover 
(N = 481 / 3,361) 

b.intercept -0.050 0.003 -0.055 -0.045 

b.forest.loss.scaled 0.003 0.004 -0.002 0.009 

b.sum.area.scaled -0.007 0.003 -0.012 -0.002 

b.duration.scaled 0.012 0.001 0.010 0.014 

b.forest.loss.scaled.sum.area.scaled -0.003 0.004 -0.009 0.004 
 sigma 0.026 0.001 0.025 0.028 
 biome.boreal.forests.taiga -0.001 0.002 -0.007 0.002 
 biome.mediterranean.forests.woodlands.and.scrub 0 0.002 -0.006 0.006 
 biome.temperate.broadleaf.and.mixed.forests 0 0.002 -0.003 0.005 
 biome.temperate.coniferous.forests 0 0.002 -0.004 0.006 

 biome.temperate.grasslands.savannas.and.shrubla
nds 0 0.002 -0.006 0.006 

 biome.tropical.and.subtropical.dry.broadleaf.forests 0 0.002 -0.008 0.005 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0 0.002 -0.005 0.010 
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 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0 0.002 -0.006 0.006 

Richness losses, overall 
forest loss and starting 
tree cover 
(n = 493 / 3,361) 

b.intercept -0.069 0.013 -0.090 -0.044 

b.forest.loss.scaled -0.004 0.005 -0.011 0.003 

b.sum.area.scaled 0.007 0.004 0 0.013 

b.duration.scaled 0.025 0.004 0.019 0.031 
 b.forest.loss.scaled.sum.area.scaled 0.011 0.006 0.002 0.021 
 sigma 0.079 0.003 0.075 0.083 
 biome.boreal.forests.taiga -0.016 0.018 -0.047 0.011 
 biome.deserts.and.xeric.shrublands 0.001 0.023 -0.043 0.046 
 biome.mediterranean.forests.woodlands.and.scrub 0.012 0.020 -0.018 0.048 
 biome.montane.grasslands.and.shrublands 0.009 0.022 -0.032 0.047 
 biome.temperate.broadleaf.and.mixed.forests -0.025 0.015 -0.050 -0.002 
 biome.temperate.conifer.forests -0.005 0.014 -0.029 0.019 

 biome.temperate.grasslands.savannas.and.shrubla
nds -0.001 0.021 -0.040 0.034 

 biome.tropical.and.subtropical.grasslands.savanna
s.and.shrublands 0.003 0.022 -0.036 0.048 

 biome.tropical.and.subtropical.moist.broadleaf.fore
sts 0.022 0.018 -0.007 0.053 
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Appendix 4.20. Citation sources and associated links for the studies part of the BioTIME 

Database for which I do not have permission to republish the data. The data from the 

remaining BioTIME studies in my analysis can all be collectively downloaded from the following 

link http://biotime.st-andrews.ac.uk/BioTIME_download.php.  

Study 
Id Citation Link 

42 Gaston, K.J. & Blackburn, T.M. (2000) Pattern and 
process in macroecology. In. Wiley-Blackwell, 
Oxford, England. 

http://ecologicaldata.org/wiki/
eastern-wood 

42 Beven, G. (1976) Changes in breeding bird 
populations of an oak-wood on Bookham 
Common, Surrey, over twenty-seven years. 
London Naturalist, 55, 23-42. 

http://ecologicaldata.org/wiki/
eastern-wood 

42 Gibbons, D.W., Reid, J.B. & Chapman, R.A. 
(1993) The new atlas of breeding birds in Britain 
and Ireland: 1988-1991. T & AD Poyser London. 

http://ecologicaldata.org/wiki/
eastern-wood 

42 Lack, P. (2010) The atlas of wintering birds in 
Britain and Ireland. A&C Black. 

http://ecologicaldata.org/wiki/
eastern-wood 

42 Standley, P., Bucknell, N., Swash, A. & Collins, I. 
(1996) The Birds of Berkshire. Berkshire Atlas 
Group. Reading, UK, 

http://ecologicaldata.org/wiki/
eastern-wood 

42 Stone, B., Sears, J., Cranswick, P., Gregory, R., 
Gibbons, D., Rehfisch, M., Aebischer, N. & Reid, J. 
(1997) Population estimates of birds in Britain and 
in the United Kingdom. British Birds, 90, 1-22. 

http://ecologicaldata.org/wiki/
eastern-wood 

42 Williamson, M. (1987) Are communities ever 
stable? Symposium of the British Ecological 
Society (ed by). 

http://ecologicaldata.org/wiki/
eastern-wood 

44 Halpern, C.B. & Lutz, J.A. (2013) "Canopy closure 
exerts weak controls on understory dynamics: a 
30-year study of overstory-understory 
interactions.". Available at: Dryad DigitalRepository 
doi:10.5061/dryad.1q88j, accessed 2013. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 

44 Halpern, C.B. & Dyrness, C. (2010) "Plant 
succession and biomass dynamics following 
logging and burning in the Andrews Experimental 
Forest Watersheds 1 and 3, 1962-Present". Long-
Term Ecological Research. Forest Science Data 
Bank, Corvallis. Available at: 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 
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http://andrewsforest.oregonstate.edu/data/abstract
.cfm?dbcode=TP073, accessed 2012. 

44 Halpern, C.B. & Lutz, J.A. (2013) Canopy closure 
exerts weak controls on understory dynamics: a 
30-year study of overstory-understory interactions. 
Ecological Monographs, 83, 221-237. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 

215 – 
220 

instru
ctions 

Click on the link and select the study from the 
below descriptions to download, leave the ‘by 
species, by location, by date and within 
coordinates’ blank (unless dates are specified on 
the study information below), i.e., choose Ontario 
Breeding Bird Atlas (2001-2005) from the ‘by 
dataset’ dropdown menu, leave other options 
blank and click ‘Search data’ button at foot of page 
and then read and agree to the data sharing policy 
outlined before clicking download. 

https://www.birdscanada.org/
birdmon/default/searchquery.j
sp 

215 HMANA - Hawk Migration Association of North 
America (HMANA). Available at: 
http://www.hmana.org/, accessed 2012. 
Please select all sites for full study data. 

http://hawkcount.org/ 
http://hawkcount.org/month_s
ummary.php?rsite= 

216 NatureCounts - Ontario Breeding Bird Atlas (2001-
2005): point count data. NatureCounts, a node of 
the Avian Knowledge Network. Bird Studies 
Canada. Available at: 
http://www.birdscanada.org/birdmon/, accessed 
2012. 

http://www.birdscanada.org/bi
rdmon/ 

218 NatureCounts - Maritimes Breeding Bird Atlas 
(2006-2010): point count data. NatureCounts, a 
node of the Avian Knowledge Network. Bird 
Studies Canada. Available at: 
http://www.birdscanada.org/birdmon/, accessed 
2012. 

http://www.birdscanada.org/bi
rdmon/ 

219 Bird Studies Canada (2012) -Marsh Monitoring 
Program. NatureCounts, a node of the Avian 
Knowledge Network. Available at: 
http://www.birdscanada.org/birdmon/, accessed 
2012. 

http://www.birdscanada.org/bi
rdmon/ 

220 Bird Studies Canada (2012) -Marsh Monitoring 
Program. NatureCounts, a node of the Avian 
Knowledge Network. Available at: 
http://www.birdscanada.org/birdmon/, accessed 
2012. 

http://www.birdscanada.org/bi
rdmon/ 
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244 Bird Studies Canada (2012) -BC Coastal 
Waterbird Survey (2004). NatureCounts, a node of 
the Avian Knowledge Network. Available at: 
http://www.birdscanada.org/birdmon/, accessed 
2012. 

http://www.birdscanada.org/bi
rdmon/ 

277 Halpern, C.B. & Lutz, J.A. (2013) "Canopy closure 
exerts weak controls on understory dynamics: a 
30-year study of overstory-understory 
interactions.". Available at: Dryad DigitalRepository 
doi:10.5061/dryad.1q88j, accessed 2013. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 

277 Halpern, C.B. & Dyrness, C. (2010) "Plant 
succession and biomass dynamics following 
logging and burning in the Andrews Experimental 
Forest Watersheds 1 and 3, 1962-Present". Long-
Term Ecological Research. Forest Science Data 
Bank, Corvallis. Available at: 
http://andrewsforest.oregonstate.edu/data/abstract
.cfm?dbcode=TP073, accessed 2012. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 

277 Halpern, C.B. & Lutz, J.A. (2013) Canopy closure 
exerts weak controls on understory dynamics: a 
30-year study of overstory-understory interactions. 
Ecological Monographs, 83, 221-237. Available at: 
Dryad DigitalRepository doi:10.5061/dryad.1q88j, 
accessed 2013. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 

279 Halpern, C.B. & Dyrness, C. (2010) "Plant 
succession and biomass dynamics following 
logging and burning in the Andrews Experimental 
Forest Watersheds 1 and 3, 1962-Present". Long-
Term Ecological Research. Forest Science Data 
Bank, Corvallis. Available at: 
http://andrewsforest.oregonstate.edu/data/abstract
.cfm?dbcode=TP073, accessed 2012. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP073 

293 Rothamsted Park Grass Experiment, Over 100 
years of Park Grass, Accessed 2016 

http://rothamsted.ac.uk/long-
term-experiments-national-
capability/classical-
experiments 
http://www.era.rothamsted.ac.
uk/eradoc/article/Williams-1-
87 

309 Pollard, E., Hall, M.L. & Bibby, T.J. (1986) 
Monitoring the Abundance of Butterflies 1976-
1985. Research & survey in nature conservation. 

http://jncc.defra.gov.uk/page-
2614 
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Available at: http://jncc.defra.gov.uk/page-2614, 
accessed 2016. 

318 SANParks (2011) "Karoo National Park Census 
Data. 1994 - 2009-. Available at: 
http://datadryad.org/handle/10255/dryad.13079?sh
ow=full, accessed 2016. 

https://www.sanparks.org/par
ks/tankwa/conservation/ff/ma
mmals.php 

331 Halpern, C.B. & McKenzie, D. (2001) Disturbance 
and post-harvest ground conditions in a structural 
retention experiment. Forest Ecology and 
Management, 154, 215-225. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP108&topnav=135 

331 Halpern, C. (2015) "DEMO: Vegetation Data - 
Post-Harvest." Demonstration of Ecosystem 
Management Options. Forest Science Data Bank, 
Corvallis, OR. Available at: 
http://andrewsforest.oregonstate.edu/data/abstract
.cfm?dbcode=TP108, accessed 2016. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP108&topnav=135 

331 Halpern, C.B., Halaj, J., Evans, S.A. & Dovčiak, M. 
(2012) Level and pattern of overstory retention 
interact to shape long-term responses of 
understories to timber harvest. Ecological 
Applications, 22, 2049-2064. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP108&topnav=135 

331 Halpern, C.B., McKenzie, D., Evans, S.A. & 
Maguire, D.A. (2005) Initial responses of forest 
understories to varying levels and patterns of 
green tree retention. Ecological Applications, 15, 
175-195. 

http://andlter.forestry.oregons
tate.edu/data/abstract.aspx?d
bcode=TP108&topnav=135 

518 D. H. Maphisa, H. Smit-Robinson, L. G. Underhill, 
R. Altwegg, Drivers of Bird Species Richness 
within Moist High-Altitude Grasslands in Eastern 
South Africa. PLOS ONE 11, e0162609 (2016). 

https://datadryad.org/stash/da
taset/doi:10.5061/dryad.m9p0
7 

521 M. Valeix, H. Fritz, S. Chamaillé‐Jammes, M. 
Bourgarel, F. Murindagomo, Fluctuations in 
abundance of large herbivore populations: insights 
into the influence of dry season rainfall and 
elephant numbers from long‐term data. Animal 
Conservation 11, 391-400 (2008). 

https://zslpublications.onlineli
brary.wiley.com/do 

522 J. Mundava et al., Factors influencing long-term 
and seasonal waterbird abundance and 
composition at two adjacent lakes in Zimbabwe. 
Ostrich 83, 69-77 (2012). 

https://www.tandfonline.com/
doi/pdf/10.2989/003065 

523 E. Haplet, SANParks, "Monthly bird lists and bird 
arrival dates, Birmingham Timbivati". Available at: 

https://www.sanparks.org/con
servation/scientific_new/sava
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http://dataknp.sanparks.org/sanparks/, accessed 
2018. (2009). 
This dataset is available on request. 

nnah_arid/data_resources/dat
a_repository.php 

524 SANParks, "Northern Plains Ecological Aerial 
Census data 1993-1998". Available at: 
http://dataknp.sanparks.org/sanparks/, accessed 
2018. (2009). 
This dataset is available on request. 

https://www.sanparks.org/con
servation/scientific_new/sava
nnah_arid/data_resources/dat
a_repository.php 
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